Lab 05 Middle Atlantic Division

Courtney Stowers

2024-04-12

Introduction

Diff-in-Diff models

For our analysis of the effectiveness of the New Markets Tax Credit (NMTC) and Low Income Housing Tax Credit (LIHTC) as a tool for community revitalization and the reduction of social vulnerability in neighborhoods across the Middle Atlantic Division, we will employ a Diff-In-Diff model of linear regression.

Diff-In-Diff models are a statistical technique that allows us to analyze the differences in differences of changes across time periods to determine whether our program intervention resulted in an additional increase or decrease beyond what we would expect following general trends in similar controls.

Cupcake ipsum dolor sit amet sugar plum marshmallow. Soufflé jelly soufflé oat cake soufflé. Candy powder gingerbread marshmallow caramels. Macaroon caramels jelly-o cookie bear claw gingerbread chocolate.

Cupcake chupa chups brownie pudding apple pie cake chocolate. Icing marzipan powder marshmallow soufflé bear claw. Ice cream pudding pudding chocolate bar soufflé dragée sweet roll. Jelly-o liquorice caramels lemon drops marzipan lemon drops.

Dependent Variables: SVI Variables, House Price Index, Median Home Values, and Median Income

Cupcake ipsum dolor sit amet icing jelly. Biscuit wafer cake candy canes candy. Tiramisu apple pie cake oat cake apple pie jelly. Cheesecake lemon drops marshmallow halvah dessert candy. Cotton candy apple pie wafer biscuit liquorice tiramisu danish. Tiramisu shortbread halvah bear claw topping. Biscuit chocolate bar gummi bears jelly beans chocolate bar lollipop oat cake macaroon. Dragée toffee liquorice chocolate bar shortbread caramels jelly-o marshmallow. Sweet roll muffin marshmallow toffee cake tootsie roll toffee. Sweet jelly beans candy canes cotton candy gummies. Pie dessert liquorice brownie gummies. Powder cupcake sweet tootsie roll macaroon halvah sweet roll tootsie roll.

Independent Variables: NMTC and LIHTC Data

Fruitcake pudding marshmallow candy canes chupa chups sesame snaps. Danish liquorice sesame snaps chocolate marzipan cheesecake sweet roll tiramisu. Sugar plum cake candy gingerbread soufflé candy bonbon sweet roll. Gummi bears chocolate cake bonbon cupcake caramels lemon drops biscuit. Chocolate cake topping croissant tiramisu wafer donut. Danish bear claw icing lemon drops chocolate danish dragée macaroon. Candy canes ice cream cupcake bear claw cupcake sugar plum chocolate cake tart. Marzipan liquorice chocolate bar jujubes wafer sugar plum. Soufflé sugar plum bonbon bonbon dragée muffin apple pie. Jelly cake tart jelly beans bear claw. Macaroon brownie tiramisu marshmallow bonbon ice cream toffee soufflé. Topping chocolate cake jelly ice cream sweet.

Library

# Load packages
library(here)         # relative filepaths for reproducibility
library(rio)          # read excel file from URL
library(tidyverse)    # data wrangling
library(stringi)      # string data wrangling
library(tidycensus)   # US census data
library(ggplot2)      # data visualization
library(kableExtra)   # table formatting
library(scales)       # palette and number formatting
library(unhcrthemes)  # data visualization themes
library(ggrepel)      # data visualization formatting to avoid overlapping
library(rcompanion)   # data visualization of variable distribution
library(ggpubr)       # data visualization of variable distribution
library(moments)      # measures of skewness and kurtosis
library(tinytable)    # format regression tables
library(modelsummary) # format regression tables

Load Functions

import::here( "fips_census_regions",
              "load_svi_data",
              "merge_svi_data",
              "census_division",
              "slopegraph_plot",
              "census_pull",
             # notice the use of here::here() that points to the .R file
             # where all these R objects are created
             .from = here::here("analysis/project_data_steps_courtney.R"),
             .character_only = TRUE)
# Load API key, assign to TidyCensus Package
source(here::here("analysis/password.R"))
census_api_key(.census_api_key)
## To install your API key for use in future sessions, run this function with `install = TRUE`.

Data

# Load NMTC AND LIHTC data sets

svi_divisional_nmtc <- readRDS(here::here(paste0("data/wrangling/", str_replace_all(census_division, " ", "_"), "_svi_divisional_nmtc.rds")))

svi_national_nmtc <- readRDS(here::here(paste0("data/wrangling/", str_replace_all(census_division, " ", "_"), "_svi_national_nmtc.rds")))

svi_divisional_lihtc <- readRDS(here::here(paste0("data/wrangling/", str_replace_all(census_division, " ", "_"), "_svi_divisional_lihtc.rds")))

svi_national_lihtc <- readRDS(here::here(paste0("data/wrangling/", str_replace_all(census_division, " ", "_"), "_svi_national_lihtc.rds")))

House Price Index Data

hpi_df <- read.csv("https://www.fhfa.gov/DataTools/Downloads/Documents/HPI/HPI_AT_BDL_tract.csv")

hpi_df_10_20 <- hpi_df %>% 
  mutate(GEOID10 = str_pad(tract, 11, "left", pad=0)) %>% 
  filter(year %in% c(2010, 2020))  %>%
 select(GEOID10, state_abbr, year, hpi) %>%
  pivot_wider(names_from = year, values_from = hpi) %>%
  mutate(housing_price_index10 = `2010`,
         housing_price_index20 = `2020`) %>%
  select(GEOID10, state_abbr, housing_price_index10, housing_price_index20)

# View data
hpi_df_10_20 %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID10 state_abbr housing_price_index10 housing_price_index20
01001020100 AL 132.35 152.78
01001020200 AL 123.78 123.37
01001020300 AL 158.57 167.01
01001020400 AL 165.11 179.60
01001020501 AL 172.55 180.96
01001020502 AL 158.75 164.25
# Drop state_abbr column for joining
hpi_df_10_20 <- hpi_df_10_20 %>% select(-state_abbr)

CBSA Crosswalk Data

msa_csa_crosswalk <- rio::import("https://r-class.github.io/paf-515-course-materials/data/raw/CSA_MSA_Crosswalk/qcew-county-msa-csa-crosswalk.xlsx", which=4)

msa_csa_crosswalk <- msa_csa_crosswalk %>% 
  mutate(county_fips = str_pad(`County Code`, 5, "left", pad=0),
         cbsa = coalesce(`CSA Title`, `MSA Title`),
         cbsa_code = coalesce(`CSA Code`, `MSA Code`),
         county_title = `County Title`)  %>% 
  select(county_fips, county_title, cbsa, cbsa_code)

msa_csa_crosswalk %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
county_fips county_title cbsa cbsa_code
01001 Autauga County, Alabama Montgomery-Alexander City, AL CSA CS388
01003 Baldwin County, Alabama Mobile-Daphne-Fairhope, AL CSA CS380
01005 Barbour County, Alabama Eufaula, AL-GA MicroSA C2164
01007 Bibb County, Alabama Birmingham-Hoover-Cullman, AL CSA CS142
01009 Blount County, Alabama Birmingham-Hoover-Cullman, AL CSA CS142
01015 Calhoun County, Alabama Anniston-Oxford, AL MSA C1150

Census Data

states <- list(svi_national_nmtc$state %>% unique())
states 
## [[1]]
##  [1] "AL" "AK" "AZ" "AR" "CA" "CO" "CT" "DE" "DC" "FL" "GA" "HI" "ID" "IL" "IN"
## [16] "IA" "KS" "KY" "LA" "ME" "MD" "MA" "MI" "MN" "MS" "MO" "MT" "NE" "NV" "NH"
## [31] "NJ" "NM" "NY" "NC" "ND" "OH" "OK" "OR" "PA" "RI" "SC" "SD" "TN" "TX" "UT"
## [46] "VT" "VA" "WA" "WV" "WI" "WY"
census_pull10 <- lapply(states, census_pull, yr = 2010)

census_pull10_df <- census_pull10[[1]] %>%  
  # Drop margin of error column
  select(-moe) %>%
  # Add suffix to variable names
  mutate(variable = paste0(variable, "_10")) %>%
  # Pivot data frame
  pivot_wider(
    names_from = variable,
    values_from = c(estimate)
  )

census_pull10_df %>% head(10) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID NAME Median_Income_10 Median_Home_Value_10
01001020100 Census Tract 201, Autauga County, Alabama 31769 120700
01001020200 Census Tract 202, Autauga County, Alabama 19437 138500
01001020300 Census Tract 203, Autauga County, Alabama 24146 111300
01001020400 Census Tract 204, Autauga County, Alabama 27735 126300
01001020500 Census Tract 205, Autauga County, Alabama 35517 173000
01001020600 Census Tract 206, Autauga County, Alabama 24597 110700
01001020700 Census Tract 207, Autauga County, Alabama 22114 93800
01001020801 Census Tract 208.01, Autauga County, Alabama 30841 258000
01001020802 Census Tract 208.02, Autauga County, Alabama 29006 145100
01001020900 Census Tract 209, Autauga County, Alabama 24841 108000
census_pull19 <- lapply(states, census_pull, yr = 2019)

census_pull19_df <- census_pull19[[1]] %>% 
  # Select columns
  select(GEOID, NAME, variable, estimate, moe) %>% 
  # Create individual FIPS columns for state, county, and tract
  mutate(FIPS_st = substr(GEOID, 1, 2),
         FIPS_county = substr(GEOID, 3, 5),
         FIPS_tract = substr(GEOID, 6, 11)) %>%
# Los Angeles, CA Census Tract fixes
                      mutate(FIPS_tract2 = if_else((FIPS_county == "037" & FIPS_st == "06" & FIPS_tract == "137000"), "930401", FIPS_tract )) %>%
# Pima County, AZ Census Tract fixes
                      mutate(FIPS_tract2 = if_else((FIPS_county == "019" & FIPS_st == "04" & FIPS_tract == "002704"), "002701", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "019" & FIPS_st == "04" & FIPS_tract == "002906"), "002903", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "019" & FIPS_st == "04" & FIPS_tract == "004118"), "410501", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "019" & FIPS_st == "04" & FIPS_tract == "004121"), "410502", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "019" & FIPS_st == "04" & FIPS_tract == "004125"), "410503", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "019" & FIPS_st == "04" & FIPS_tract == "005200"), "470400", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "019" & FIPS_st == "04" & FIPS_tract == "005300"), "470500", FIPS_tract2 )) %>%
# Madison County, NY Census Tract fixes
                      mutate(FIPS_tract2 = if_else((FIPS_county == "053" & FIPS_st == "36" & FIPS_tract == "030101"), "940101", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "053" & FIPS_st == "36" & FIPS_tract == "030102"), "940102", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "053" & FIPS_st == "36" & FIPS_tract == "030103"), "940103", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "053" & FIPS_st == "36" & FIPS_tract == "030200"), "940200", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "053" & FIPS_st == "36" & FIPS_tract == "030300"), "940300", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "053" & FIPS_st == "36" & FIPS_tract == "030401"), "940401", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "053" & FIPS_st == "36" & FIPS_tract == "030403"), "940403", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "053" & FIPS_st == "36" & FIPS_tract == "030600"), "940600", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "053" & FIPS_st == "36" & FIPS_tract == "030402"), "940700", FIPS_tract2 )) %>%
# Oneida County, NY Census Tract fixes
                      mutate(FIPS_tract2 = if_else((FIPS_county == "065" & FIPS_st == "36" & FIPS_tract == "024800"), "940000", FIPS_tract2 )) %>% 
                      mutate(FIPS_tract2 = if_else((FIPS_county == "065" & FIPS_st == "36" & FIPS_tract == "024700"), "940100", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "065" & FIPS_st == "36" & FIPS_tract == "024900"), "940200", FIPS_tract2 )) %>%  
                      # Move columns in data set
                      relocate(c(FIPS_st, FIPS_county, FIPS_tract, FIPS_tract2),.after = GEOID) %>%
                      # Create new GEOID column
                      mutate(GEOID = paste0(FIPS_st, FIPS_county, FIPS_tract2)) %>% 
                      # Drop newly created FIPS columns and margin of error
                      select(-FIPS_st, -FIPS_county, -FIPS_tract, -FIPS_tract2, -moe) %>% 
                      # Add suffix
                      mutate(variable = paste0(variable, "_19")) %>%
                      # Pivot data set
                      pivot_wider(
                        names_from = variable,
                        values_from = c(estimate)
                      ) 

census_pull19_df %>% head(10) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID NAME Median_Income_19 Median_Home_Value_19
01001020100 Census Tract 201, Autauga County, Alabama 25970 136100
01001020200 Census Tract 202, Autauga County, Alabama 20154 90500
01001020300 Census Tract 203, Autauga County, Alabama 27383 122600
01001020400 Census Tract 204, Autauga County, Alabama 34620 152700
01001020500 Census Tract 205, Autauga County, Alabama 41178 186900
01001020600 Census Tract 206, Autauga County, Alabama 21146 103600
01001020700 Census Tract 207, Autauga County, Alabama 20934 82400
01001020801 Census Tract 208.01, Autauga County, Alabama 31667 322900
01001020802 Census Tract 208.02, Autauga County, Alabama 33086 171500
01001020900 Census Tract 209, Autauga County, Alabama 32677 156900
inflation_adj = 1.16

# Join 2010 and 2019 Median Income and Home Value Data
census_pull_df <- left_join(census_pull10_df, census_pull19_df[c("GEOID", "Median_Income_19", "Median_Home_Value_19")], join_by("GEOID" == "GEOID"))

# Create new inflation adjusted columns for 2010 median income and median home value, find changes over time
census_pull_df <- census_pull_df %>% 
                   mutate(Median_Income_10adj = Median_Income_10*inflation_adj,
                          Median_Home_Value_10adj = Median_Home_Value_10*inflation_adj,
                          Median_Income_Change = Median_Income_19 - Median_Income_10adj,
                          Median_Income_Change_pct = (Median_Income_19 - Median_Income_10adj)/Median_Income_10adj,
                          Median_Home_Value_Change = Median_Home_Value_19 - Median_Home_Value_10adj,
                          Median_Home_Value_Change_pct = (Median_Home_Value_19 - Median_Home_Value_10adj)/Median_Home_Value_10adj)

# View data
census_pull_df %>% head(10) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID NAME Median_Income_10 Median_Home_Value_10 Median_Income_19 Median_Home_Value_19 Median_Income_10adj Median_Home_Value_10adj Median_Income_Change Median_Income_Change_pct Median_Home_Value_Change Median_Home_Value_Change_pct
01001020100 Census Tract 201, Autauga County, Alabama 31769 120700 25970 136100 36852.04 140012 -10882.04 -0.2952900 -3912 -0.0279405
01001020200 Census Tract 202, Autauga County, Alabama 19437 138500 20154 90500 22546.92 160660 -2392.92 -0.1061307 -70160 -0.4366986
01001020300 Census Tract 203, Autauga County, Alabama 24146 111300 27383 122600 28009.36 129108 -626.36 -0.0223625 -6508 -0.0504074
01001020400 Census Tract 204, Autauga County, Alabama 27735 126300 34620 152700 32172.60 146508 2447.40 0.0760709 6192 0.0422639
01001020500 Census Tract 205, Autauga County, Alabama 35517 173000 41178 186900 41199.72 200680 -21.72 -0.0005272 -13780 -0.0686665
01001020600 Census Tract 206, Autauga County, Alabama 24597 110700 21146 103600 28532.52 128412 -7386.52 -0.2588807 -24812 -0.1932218
01001020700 Census Tract 207, Autauga County, Alabama 22114 93800 20934 82400 25652.24 108808 -4718.24 -0.1839309 -26408 -0.2427027
01001020801 Census Tract 208.01, Autauga County, Alabama 30841 258000 31667 322900 35775.56 299280 -4108.56 -0.1148426 23620 0.0789227
01001020802 Census Tract 208.02, Autauga County, Alabama 29006 145100 33086 171500 33646.96 168316 -560.96 -0.0166719 3184 0.0189168
01001020900 Census Tract 209, Autauga County, Alabama 24841 108000 32677 156900 28815.56 125280 3861.44 0.1340054 31620 0.2523946

NMTC Data

svi_divisional_nmtc_df0 <- left_join(svi_divisional_nmtc, census_pull_df, join_by("GEOID_2010_trt" == "GEOID"))

svi_divisional_nmtc_df1 <- left_join(svi_divisional_nmtc_df0, hpi_df_10_20, join_by("GEOID_2010_trt" == "GEOID10")) %>%
                          unite("county_fips", FIPS_st, FIPS_county, sep = "") 

svi_divisional_nmtc_df <- left_join(svi_divisional_nmtc_df1, msa_csa_crosswalk, join_by("county_fips" == "county_fips"))

svi_divisional_nmtc_df %>% head(10) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt county_fips FIPS_tract state state_name county region_number region division_number division E_TOTPOP_10 E_HU_10 E_HH_10 E_POV150_10 ET_POVSTATUS_10 EP_POV150_10 EPL_POV150_10 F_POV150_10 E_UNEMP_10 ET_EMPSTATUS_10 EP_UNEMP_10 EPL_UNEMP_10 F_UNEMP_10 E_HBURD_OWN_10 ET_HOUSINGCOST_OWN_10 EP_HBURD_OWN_10 EPL_HBURD_OWN_10 F_HBURD_OWN_10 E_HBURD_RENT_10 ET_HOUSINGCOST_RENT_10 EP_HBURD_RENT_10 EPL_HBURD_RENT_10 F_HBURD_RENT_10 E_HBURD_10 ET_HOUSINGCOST_10 EP_HBURD_10 EPL_HBURD_10 F_HBURD_10 E_NOHSDP_10 ET_EDSTATUS_10 EP_NOHSDP_10 EPL_NOHSDP_10 F_NOHSDP_10 E_UNINSUR_12 ET_INSURSTATUS_12 EP_UNINSUR_12 EPL_UNINSUR_12 F_UNINSUR_12 E_AGE65_10 EP_AGE65_10 EPL_AGE65_10 F_AGE65_10 E_AGE17_10 EP_AGE17_10 EPL_AGE17_10 F_AGE17_10 E_DISABL_12 ET_DISABLSTATUS_12 EP_DISABL_12 EPL_DISABL_12 F_DISABL_12 E_SNGPNT_10 ET_FAMILIES_10 EP_SNGPNT_10 EPL_SNGPNT_10 F_SNGPNT_10 E_LIMENG_10 ET_POPAGE5UP_10 EP_LIMENG_10 EPL_LIMENG_10 F_LIMENG_10 E_MINRTY_10 ET_POPETHRACE_10 EP_MINRTY_10 EPL_MINRTY_10 F_MINRTY_10 E_STRHU_10 E_MUNIT_10 EP_MUNIT_10 EPL_MUNIT_10 F_MUNIT_10 E_MOBILE_10 EP_MOBILE_10 EPL_MOBILE_10 F_MOBILE_10 E_CROWD_10 ET_OCCUPANTS_10 EP_CROWD_10 EPL_CROWD_10 F_CROWD_10 E_NOVEH_10 ET_KNOWNVEH_10 EP_NOVEH_10 EPL_NOVEH_10 F_NOVEH_10 E_GROUPQ_10 ET_HHTYPE_10 EP_GROUPQ_10 EPL_GROUPQ_10 F_GROUPQ_10 SPL_THEME1_10 RPL_THEME1_10 F_THEME1_10 SPL_THEME2_10 RPL_THEME2_10 F_THEME2_10 SPL_THEME3_10 RPL_THEME3_10 F_THEME3_10 SPL_THEME4_10 RPL_THEME4_10 F_THEME4_10 SPL_THEMES_10 RPL_THEMES_10 F_TOTAL_10 E_TOTPOP_20 E_HU_20 E_HH_20 E_POV150_20 ET_POVSTATUS_20 EP_POV150_20 EPL_POV150_20 F_POV150_20 E_UNEMP_20 ET_EMPSTATUS_20 EP_UNEMP_20 EPL_UNEMP_20 F_UNEMP_20 E_HBURD_OWN_20 ET_HOUSINGCOST_OWN_20 EP_HBURD_OWN_20 EPL_HBURD_OWN_20 F_HBURD_OWN_20 E_HBURD_RENT_20 ET_HOUSINGCOST_RENT_20 EP_HBURD_RENT_20 EPL_HBURD_RENT_20 F_HBURD_RENT_20 E_HBURD_20 ET_HOUSINGCOST_20 EP_HBURD_20 EPL_HBURD_20 F_HBURD_20 E_NOHSDP_20 ET_EDSTATUS_20 EP_NOHSDP_20 EPL_NOHSDP_20 F_NOHSDP_20 E_UNINSUR_20 ET_INSURSTATUS_20 EP_UNINSUR_20 EPL_UNINSUR_20 F_UNINSUR_20 E_AGE65_20 EP_AGE65_20 EPL_AGE65_20 F_AGE65_20 E_AGE17_20 EP_AGE17_20 EPL_AGE17_20 F_AGE17_20 E_DISABL_20 ET_DISABLSTATUS_20 EP_DISABL_20 EPL_DISABL_20 F_DISABL_20 E_SNGPNT_20 ET_FAMILIES_20 EP_SNGPNT_20 EPL_SNGPNT_20 F_SNGPNT_20 E_LIMENG_20 ET_POPAGE5UP_20 EP_LIMENG_20 EPL_LIMENG_20 F_LIMENG_20 E_MINRTY_20 ET_POPETHRACE_20 EP_MINRTY_20 EPL_MINRTY_20 F_MINRTY_20 E_STRHU_20 E_MUNIT_20 EP_MUNIT_20 EPL_MUNIT_20 F_MUNIT_20 E_MOBILE_20 EP_MOBILE_20 EPL_MOBILE_20 F_MOBILE_20 E_CROWD_20 ET_OCCUPANTS_20 EP_CROWD_20 EPL_CROWD_20 F_CROWD_20 E_NOVEH_20 ET_KNOWNVEH_20 EP_NOVEH_20 EPL_NOVEH_20 F_NOVEH_20 E_GROUPQ_20 ET_HHTYPE_20 EP_GROUPQ_20 EPL_GROUPQ_20 F_GROUPQ_20 SPL_THEME1_20 RPL_THEME1_20 F_THEME1_20 SPL_THEME2_20 RPL_THEME2_20 F_THEME2_20 SPL_THEME3_20 RPL_THEME3_20 F_THEME3_20 SPL_THEME4_20 RPL_THEME4_20 F_THEME4_20 SPL_THEMES_20 RPL_THEMES_20 F_TOTAL_20 nmtc_eligibility pre10_nmtc_project_cnt pre10_nmtc_dollars pre10_nmtc_dollars_formatted post10_nmtc_project_cnt post10_nmtc_dollars post10_nmtc_dollars_formatted nmtc_flag NAME Median_Income_10 Median_Home_Value_10 Median_Income_19 Median_Home_Value_19 Median_Income_10adj Median_Home_Value_10adj Median_Income_Change Median_Income_Change_pct Median_Home_Value_Change Median_Home_Value_Change_pct housing_price_index10 housing_price_index20 county_title cbsa cbsa_code
34001000100 34001 000100 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 2907 1088 983 1127 2907 38.76849 0.8482 1 144 1433 10.048849 0.7544 1 280 435 64.36782 0.9529 1 204 548 37.22628 0.2998 0 484 983 49.23703 0.7813 1 468 1759 26.60603 0.8634 1 532 2543 20.92017 0.8978 1 250 8.599931 0.17770 0 944 32.47334 0.94170 1 186 1851 10.04862 0.2706 0 266 678 39.233038 0.8981 1 177 2611 6.779012 0.7778 1 1928 2907 66.32267 0.7743 1 1088 113 10.386029 0.6229 0 9 0.8272059 0.7223 0 80 983 8.138352 0.8657 1 265 983 26.95829 0.7354 0 0 2907 0 0.3512 0 4.1451 0.8935 5 3.06590 0.7944 3 0.7743 0.7667 1 3.2975 0.8414 1 11.28280 0.8862 10 2157 941 784 1182 2157 54.79833 0.9571 1 242 1058 22.873346 0.9922 1 215 342 62.86550 0.9780 1 316 442 71.49321 0.9481 1 531 784 67.72959 0.9893 1 396 1274 31.083202 0.9497 1 266 2157 12.331943 0.9041 1 185 8.576727 0.09430 0 552 25.59110 0.8128 1 297 1605 18.504673 0.74880 0 83 510 16.27451 0.6090 0 251 2020 12.425743 0.87100 1 1852 2157 85.85999 0.8476 1 941 118 12.5398512 0.6385 0 0 0.00000 0.3216 0 67 784 8.545918 0.8657 1 212 784 27.04082 0.7502 1 0 2157 0.0000000 0.1517 0 4.7924 0.9850 5 3.13590 0.8217 2 0.8476 0.8400 1 2.7277 0.6085 2 11.50360 0.9104 10 Yes 0 0 $0 0 0 $0 0 Census Tract 1, Atlantic County, New Jersey 23841 227800 19425 155600 27655.56 264248 -8230.56 -0.2976096 -108648 -0.4111592 139.73 111.11 Atlantic County, New Jersey Atlantic City, NJ MSA C1210
34001000200 34001 000200 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 3189 2217 1473 519 3189 16.27469 0.4806 0 109 1558 6.996149 0.5179 0 573 955 60.00000 0.9323 1 199 518 38.41699 0.3261 0 772 1473 52.41005 0.8418 1 405 2579 15.70376 0.6491 0 484 3547 13.64533 0.7154 0 847 26.560050 0.96290 1 436 13.67200 0.08181 0 608 3005 20.23295 0.8466 1 42 857 4.900817 0.1204 0 422 3072 13.736979 0.8799 1 1792 3189 56.19316 0.7390 0 2217 901 40.640505 0.8693 1 0 0.0000000 0.3251 0 48 1473 3.258656 0.7064 0 250 1473 16.97217 0.6444 0 0 3189 0 0.3512 0 3.2048 0.6963 1 2.89161 0.7231 3 0.7390 0.7317 0 2.8964 0.6887 1 9.73181 0.7340 5 3510 2046 1353 1021 3510 29.08832 0.7682 1 121 1852 6.533477 0.6717 0 343 696 49.28161 0.9273 1 416 657 63.31811 0.8696 1 759 1353 56.09756 0.9321 1 553 2338 23.652695 0.8871 1 354 3510 10.085470 0.8530 1 643 18.319088 0.60310 0 1002 28.54701 0.9055 1 450 2508 17.942584 0.72330 0 237 786 30.15267 0.8539 1 534 3375 15.822222 0.90620 1 2534 3510 72.19373 0.7818 1 2046 906 44.2815249 0.8690 1 0 0.00000 0.3216 0 119 1353 8.795270 0.8711 1 324 1353 23.94678 0.7255 0 0 3510 0.0000000 0.1517 0 4.1121 0.9003 4 3.99200 0.9781 3 0.7818 0.7747 1 2.9389 0.7011 2 11.82480 0.9310 10 Yes 0 0 $0 0 0 $0 0 Census Tract 2, Atlantic County, New Jersey 26736 320400 25729 187900 31013.76 371664 -5284.76 -0.1704005 -183764 -0.4944358 184.06 165.71 Atlantic County, New Jersey Atlantic City, NJ MSA C1210
34001000300 34001 000300 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 3997 1823 1357 1401 3968 35.30746 0.8164 1 382 2238 17.068811 0.9376 1 176 329 53.49544 0.8855 1 604 1028 58.75486 0.7947 1 780 1357 57.47973 0.9165 1 920 2677 34.36683 0.9346 1 1351 4149 32.56206 0.9811 1 314 7.855892 0.14370 0 937 23.44258 0.55900 0 319 3054 10.44532 0.3000 0 187 782 23.913044 0.7498 0 1080 3671 29.419777 0.9742 1 3357 3997 83.98799 0.8419 1 1823 363 19.912233 0.7535 1 0 0.0000000 0.3251 0 150 1357 11.053795 0.9136 1 651 1357 47.97347 0.8585 1 0 3997 0 0.3512 0 4.5862 0.9691 5 2.72670 0.6360 1 0.8419 0.8336 1 3.2019 0.8054 3 11.35670 0.8920 10 3801 1640 1226 1857 3801 48.85556 0.9333 1 226 1800 12.555556 0.9267 1 111 280 39.64286 0.8339 1 608 946 64.27061 0.8842 1 719 1226 58.64600 0.9528 1 650 2275 28.571429 0.9337 1 1027 3801 27.019206 0.9914 1 380 9.997369 0.14040 0 1223 32.17574 0.9607 1 219 2578 8.494957 0.15680 0 268 909 29.48295 0.8456 1 940 3400 27.647059 0.97280 1 3318 3801 87.29282 0.8579 1 1640 262 15.9756098 0.6917 0 0 0.00000 0.3216 0 124 1226 10.114192 0.8955 1 477 1226 38.90701 0.8258 1 0 3801 0.0000000 0.1517 0 4.7379 0.9829 5 3.07630 0.8013 3 0.8579 0.8501 1 2.8863 0.6781 2 11.55840 0.9150 11 Yes 0 0 $0 0 0 $0 0 Census Tract 3, Atlantic County, New Jersey 21045 250500 19420 147300 24412.20 290580 -4992.20 -0.2044961 -143280 -0.4930828 NA NA Atlantic County, New Jersey Atlantic City, NJ MSA C1210
34001000500 34001 000500 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 3483 1241 1027 1938 3483 55.64169 0.9533 1 124 1630 7.607362 0.5830 0 227 446 50.89686 0.8549 1 478 581 82.27194 0.9799 1 705 1027 68.64654 0.9863 1 733 2077 35.29129 0.9396 1 727 3258 22.31430 0.9149 1 377 10.824002 0.30810 0 1055 30.28998 0.90140 1 268 2401 11.16202 0.3549 0 209 763 27.391874 0.7940 1 911 3077 29.606760 0.9746 1 3036 3483 87.16624 0.8550 1 1241 52 4.190169 0.4505 0 4 0.3223207 0.6567 0 113 1027 11.002921 0.9128 1 422 1027 41.09056 0.8250 1 0 3483 0 0.3512 0 4.3771 0.9379 4 3.33300 0.8766 3 0.8550 0.8467 1 3.1962 0.8026 2 11.76130 0.9229 10 3385 1185 945 1682 3364 50.00000 0.9391 1 72 1577 4.565631 0.4586 0 185 468 39.52991 0.8332 1 362 477 75.89099 0.9703 1 547 945 57.88360 0.9477 1 592 1983 29.853757 0.9422 1 738 3385 21.802068 0.9817 1 240 7.090103 0.05988 0 1129 33.35303 0.9689 1 135 2256 5.984043 0.04817 0 110 717 15.34170 0.5822 0 721 3076 23.439532 0.95690 1 3029 3385 89.48301 0.8727 1 1185 9 0.7594937 0.2382 0 0 0.00000 0.3216 0 103 945 10.899471 0.9072 1 263 945 27.83069 0.7560 1 0 3385 0.0000000 0.1517 0 4.2693 0.9283 4 2.61605 0.5709 2 0.8727 0.8648 1 2.3747 0.4357 2 10.13275 0.7921 9 Yes 0 0 $0 0 0 $0 0 Census Tract 5, Atlantic County, New Jersey 17287 197000 21700 131800 20052.92 228520 1647.08 0.0821367 -96720 -0.4232452 NA NA Atlantic County, New Jersey Atlantic City, NJ MSA C1210
34001001100 34001 001100 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 2204 1204 1204 1185 2204 53.76588 0.9457 1 219 927 23.624596 0.9830 1 97 172 56.39535 0.9094 1 462 1032 44.76744 0.4746 0 559 1204 46.42857 0.7197 0 346 1440 24.02778 0.8306 1 469 1942 24.15036 0.9360 1 363 16.470054 0.70200 0 578 26.22505 0.74410 0 442 1558 28.36970 0.9675 1 247 396 62.373737 0.9898 1 104 2051 5.070697 0.7260 0 2118 2204 96.09800 0.9204 1 1204 570 47.342193 0.8858 1 0 0.0000000 0.3251 0 14 1204 1.162791 0.4877 0 817 1204 67.85714 0.9413 1 0 2204 0 0.3512 0 4.4150 0.9451 4 4.12940 0.9805 2 0.9204 0.9114 1 2.9911 0.7243 2 12.45590 0.9597 9 1950 1267 1096 1131 1950 58.00000 0.9678 1 66 706 9.348442 0.8395 1 42 101 41.58416 0.8612 1 309 995 31.05528 0.1959 0 351 1096 32.02555 0.4782 0 510 1379 36.983321 0.9763 1 155 1950 7.948718 0.7660 1 392 20.102564 0.69880 0 447 22.92308 0.6712 0 570 1503 37.924152 0.99200 1 143 374 38.23529 0.9167 1 109 1841 5.920695 0.74640 0 1909 1950 97.89744 0.9529 1 1267 479 37.8058406 0.8464 1 0 0.00000 0.3216 0 33 1096 3.010949 0.6446 0 743 1096 67.79197 0.9414 1 0 1950 0.0000000 0.1517 0 4.0278 0.8848 4 4.02510 0.9798 2 0.9529 0.9442 1 2.9057 0.6869 2 11.91150 0.9365 9 Yes 0 0 $0 0 0 $0 0 Census Tract 11, Atlantic County, New Jersey 16008 238500 15402 162500 18569.28 276660 -3167.28 -0.1705656 -114160 -0.4126364 NA NA Atlantic County, New Jersey Atlantic City, NJ MSA C1210
34001001300 34001 001300 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 2153 1026 857 695 2153 32.28054 0.7840 1 266 1112 23.920863 0.9840 1 168 432 38.88889 0.6425 0 271 425 63.76471 0.8714 1 439 857 51.22520 0.8184 1 210 1471 14.27600 0.5989 0 463 2215 20.90293 0.8974 1 334 15.513237 0.64360 0 539 25.03484 0.66990 0 222 1687 13.15945 0.4984 0 265 608 43.585526 0.9249 1 92 1905 4.829396 0.7187 0 1993 2153 92.56851 0.8890 1 1026 147 14.327485 0.6885 0 0 0.0000000 0.3251 0 20 857 2.333722 0.6326 0 142 857 16.56943 0.6382 0 0 2153 0 0.3512 0 4.0827 0.8798 4 3.45550 0.9039 1 0.8890 0.8804 1 2.6356 0.5687 0 11.06280 0.8673 6 1632 917 770 591 1632 36.21324 0.8455 1 203 854 23.770492 0.9928 1 164 291 56.35739 0.9604 1 364 479 75.99165 0.9710 1 528 770 68.57143 0.9914 1 150 1056 14.204546 0.7232 0 97 1632 5.943627 0.6352 0 301 18.443628 0.60940 0 271 16.60539 0.2292 0 314 1361 23.071271 0.88960 1 148 410 36.09756 0.9025 1 0 1585 0.000000 0.06953 0 1512 1632 92.64706 0.8931 1 917 246 26.8266085 0.7912 1 16 1.74482 0.7855 1 0 770 0.000000 0.1194 0 219 770 28.44156 0.7606 1 14 1632 0.8578431 0.6722 0 4.1881 0.9131 3 2.70023 0.6211 2 0.8931 0.8850 1 3.1289 0.7740 3 10.91033 0.8638 9 Yes 0 0 $0 0 0 $0 0 Census Tract 13, Atlantic County, New Jersey 32444 233700 23773 162300 37635.04 271092 -13862.04 -0.3683280 -108792 -0.4013103 66.52 44.91 Atlantic County, New Jersey Atlantic City, NJ MSA C1210
34001001400 34001 001400 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 3736 1893 1503 2135 3736 57.14668 0.9592 1 411 1635 25.137615 0.9866 1 267 401 66.58354 0.9617 1 715 1102 64.88203 0.8844 1 982 1503 65.33599 0.9764 1 511 1696 30.12972 0.9005 1 527 4199 12.55061 0.6728 0 269 7.200214 0.11510 0 1598 42.77302 0.99350 1 345 2252 15.31972 0.6309 0 787 941 83.634432 0.9990 1 63 3192 1.973684 0.5448 0 3463 3736 92.69272 0.8905 1 1893 427 22.556788 0.7770 1 0 0.0000000 0.3251 0 22 1503 1.463739 0.5339 0 705 1503 46.90619 0.8533 1 0 3736 0 0.3512 0 4.4955 0.9585 4 3.28330 0.8640 2 0.8905 0.8818 1 2.8405 0.6671 2 11.50980 0.9048 9 3812 1724 1549 2291 3754 61.02824 0.9760 1 380 1547 24.563672 0.9934 1 117 240 48.75000 0.9237 1 753 1309 57.52483 0.7816 1 870 1549 56.16527 0.9326 1 472 1913 24.673288 0.8987 1 294 3802 7.732772 0.7558 1 363 9.522560 0.12310 0 1463 38.37880 0.9885 1 508 2339 21.718683 0.85640 1 564 948 59.49367 0.9910 1 201 3159 6.362773 0.76130 1 3389 3812 88.90346 0.8683 1 1724 571 33.1206497 0.8294 1 0 0.00000 0.3216 0 83 1549 5.358296 0.7754 1 661 1549 42.67269 0.8448 1 10 3812 0.2623295 0.4739 0 4.5565 0.9673 5 3.72030 0.9522 4 0.8683 0.8605 1 3.2451 0.8159 3 12.39020 0.9595 13 Yes 0 0 $0 0 0 $0 0 Census Tract 14, Atlantic County, New Jersey 16780 255800 17487 139100 19464.80 296728 -1977.80 -0.1016091 -157628 -0.5312205 NA NA Atlantic County, New Jersey Atlantic City, NJ MSA C1210
34001001500 34001 001500 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 1074 901 752 656 1074 61.08007 0.9700 1 43 270 15.925926 0.9242 1 30 70 42.85714 0.7276 0 366 682 53.66569 0.6910 0 396 752 52.65957 0.8458 1 266 921 28.88165 0.8886 1 121 1064 11.37218 0.6131 0 385 35.847300 0.99020 1 129 12.01117 0.06170 0 321 993 32.32628 0.9846 1 62 195 31.794872 0.8408 1 125 1050 11.904762 0.8562 1 965 1074 89.85102 0.8717 1 901 636 70.588235 0.9304 1 0 0.0000000 0.3251 0 10 752 1.329787 0.5133 0 626 752 83.24468 0.9888 1 0 1074 0 0.3512 0 4.2417 0.9134 4 3.73350 0.9515 4 0.8717 0.8632 1 3.1088 0.7709 2 11.95570 0.9362 11 1601 976 810 1001 1601 62.52342 0.9797 1 204 563 36.234458 0.9989 1 74 110 67.27273 0.9848 1 224 700 32.00000 0.2097 0 298 810 36.79012 0.6089 0 379 1145 33.100437 0.9610 1 272 1601 16.989382 0.9572 1 451 28.169894 0.93630 1 251 15.67770 0.1835 0 411 1350 30.444444 0.97330 1 196 446 43.94619 0.9511 1 220 1532 14.360313 0.89290 1 1435 1601 89.63148 0.8738 1 976 451 46.2090164 0.8742 1 0 0.00000 0.3216 0 24 810 2.962963 0.6412 0 546 810 67.40741 0.9401 1 15 1601 0.9369144 0.6832 0 4.5057 0.9617 4 3.93710 0.9752 4 0.8738 0.8659 1 3.4603 0.8774 2 12.77690 0.9705 11 Yes 0 0 $0 0 0 $0 0 Census Tract 15, Atlantic County, New Jersey 11549 172400 12339 NA 13396.84 199984 -1057.84 -0.0789619 NA NA NA NA Atlantic County, New Jersey Atlantic City, NJ MSA C1210
34001001900 34001 001900 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 1656 1159 903 524 1656 31.64251 0.7755 1 72 879 8.191126 0.6337 0 41 50 82.00000 0.9900 1 407 853 47.71395 0.5494 0 448 903 49.61240 0.7888 1 210 1318 15.93323 0.6573 0 409 1748 23.39817 0.9270 1 134 8.091787 0.15270 0 262 15.82126 0.12460 0 268 1303 20.56792 0.8570 1 87 338 25.739645 0.7731 1 93 1617 5.751392 0.7497 0 1416 1656 85.50725 0.8482 1 1159 897 77.394305 0.9416 1 0 0.0000000 0.3251 0 91 903 10.077519 0.9007 1 516 903 57.14286 0.9002 1 0 1656 0 0.3512 0 3.7823 0.8187 3 2.65710 0.5936 2 0.8482 0.8400 1 3.4188 0.8829 3 10.70640 0.8361 9 1343 1022 751 694 1343 51.67535 0.9465 1 136 665 20.451128 0.9868 1 54 65 83.07692 0.9939 1 455 686 66.32653 0.9072 1 509 751 67.77630 0.9894 1 68 926 7.343413 0.4249 0 270 1343 20.104244 0.9746 1 161 11.988086 0.22700 0 281 20.92331 0.5297 0 212 1062 19.962335 0.80630 1 69 206 33.49515 0.8825 1 104 1225 8.489796 0.81120 1 1038 1343 77.28965 0.8047 1 1022 802 78.4735812 0.9398 1 0 0.00000 0.3216 0 34 751 4.527297 0.7388 0 376 751 50.06658 0.8789 1 0 1343 0.0000000 0.1517 0 4.3222 0.9357 4 3.25670 0.8567 3 0.8047 0.7974 1 3.0308 0.7381 2 11.41440 0.9049 10 Yes 0 0 $0 0 0 $0 0 Census Tract 19, Atlantic County, New Jersey 20965 223700 18803 254400 24319.40 259492 -5516.40 -0.2268313 -5092 -0.0196230 NA NA Atlantic County, New Jersey Atlantic City, NJ MSA C1210
34001002300 34001 002300 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 2251 1108 703 1183 2251 52.55442 0.9403 1 137 842 16.270784 0.9292 1 119 230 51.73913 0.8660 1 213 473 45.03171 0.4822 0 332 703 47.22617 0.7383 0 370 1322 27.98790 0.8776 1 811 2471 32.82072 0.9821 1 153 6.796979 0.09922 0 738 32.78543 0.94640 1 191 1646 11.60389 0.3890 0 189 519 36.416185 0.8771 1 480 1860 25.806452 0.9639 1 1961 2251 87.11684 0.8548 1 1108 72 6.498195 0.5264 0 0 0.0000000 0.3251 0 43 703 6.116643 0.8192 1 338 703 48.07966 0.8595 1 0 2251 0 0.3512 0 4.4675 0.9532 4 3.27562 0.8621 3 0.8548 0.8465 1 2.8814 0.6831 2 11.47932 0.9018 10 2410 1143 789 1222 2409 50.72644 0.9419 1 118 1396 8.452722 0.7982 1 103 219 47.03196 0.9109 1 428 570 75.08772 0.9667 1 531 789 67.30038 0.9884 1 729 1582 46.080910 0.9943 1 754 2410 31.286307 0.9952 1 84 3.485477 0.01502 0 592 24.56432 0.7651 1 258 1818 14.191419 0.52410 0 273 537 50.83799 0.9753 1 826 2255 36.629712 0.99160 1 2193 2410 90.99585 0.8826 1 1143 71 6.2117235 0.4953 0 0 0.00000 0.3216 0 202 789 25.602028 0.9894 1 362 789 45.88086 0.8609 1 0 2410 0.0000000 0.1517 0 4.7180 0.9818 5 3.27112 0.8607 3 0.8826 0.8746 1 2.8189 0.6488 2 11.69062 0.9229 11 Yes 0 0 $0 0 0 $0 0 Census Tract 23, Atlantic County, New Jersey 18704 223300 18470 116700 21696.64 259028 -3226.64 -0.1487161 -142328 -0.5494696 NA NA Atlantic County, New Jersey Atlantic City, NJ MSA C1210
svi_national_nmtc_df0 <- left_join(svi_national_nmtc, census_pull_df, join_by("GEOID_2010_trt" == "GEOID"))

svi_national_nmtc_df1 <- left_join(svi_national_nmtc_df0, hpi_df_10_20, join_by("GEOID_2010_trt" == "GEOID10")) %>%
                          unite("county_fips", FIPS_st, FIPS_county, sep = "") 

svi_national_nmtc_df <- left_join(svi_national_nmtc_df1, msa_csa_crosswalk, join_by("county_fips" == "county_fips"))

svi_national_nmtc_df %>% head(10) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt county_fips FIPS_tract state state_name county region_number region division_number division E_TOTPOP_10 E_HU_10 E_HH_10 E_POV150_10 ET_POVSTATUS_10 EP_POV150_10 EPL_POV150_10 F_POV150_10 E_UNEMP_10 ET_EMPSTATUS_10 EP_UNEMP_10 EPL_UNEMP_10 F_UNEMP_10 E_HBURD_OWN_10 ET_HOUSINGCOST_OWN_10 EP_HBURD_OWN_10 EPL_HBURD_OWN_10 F_HBURD_OWN_10 E_HBURD_RENT_10 ET_HOUSINGCOST_RENT_10 EP_HBURD_RENT_10 EPL_HBURD_RENT_10 F_HBURD_RENT_10 E_HBURD_10 ET_HOUSINGCOST_10 EP_HBURD_10 EPL_HBURD_10 F_HBURD_10 E_NOHSDP_10 ET_EDSTATUS_10 EP_NOHSDP_10 EPL_NOHSDP_10 F_NOHSDP_10 E_UNINSUR_12 ET_INSURSTATUS_12 EP_UNINSUR_12 EPL_UNINSUR_12 F_UNINSUR_12 E_AGE65_10 EP_AGE65_10 EPL_AGE65_10 F_AGE65_10 E_AGE17_10 EP_AGE17_10 EPL_AGE17_10 F_AGE17_10 E_DISABL_12 ET_DISABLSTATUS_12 EP_DISABL_12 EPL_DISABL_12 F_DISABL_12 E_SNGPNT_10 ET_FAMILIES_10 EP_SNGPNT_10 EPL_SNGPNT_10 F_SNGPNT_10 E_LIMENG_10 ET_POPAGE5UP_10 EP_LIMENG_10 EPL_LIMENG_10 F_LIMENG_10 E_MINRTY_10 ET_POPETHRACE_10 EP_MINRTY_10 EPL_MINRTY_10 F_MINRTY_10 E_STRHU_10 E_MUNIT_10 EP_MUNIT_10 EPL_MUNIT_10 F_MUNIT_10 E_MOBILE_10 EP_MOBILE_10 EPL_MOBILE_10 F_MOBILE_10 E_CROWD_10 ET_OCCUPANTS_10 EP_CROWD_10 EPL_CROWD_10 F_CROWD_10 E_NOVEH_10 ET_KNOWNVEH_10 EP_NOVEH_10 EPL_NOVEH_10 F_NOVEH_10 E_GROUPQ_10 ET_HHTYPE_10 EP_GROUPQ_10 EPL_GROUPQ_10 F_GROUPQ_10 SPL_THEME1_10 RPL_THEME1_10 F_THEME1_10 SPL_THEME2_10 RPL_THEME2_10 F_THEME2_10 SPL_THEME3_10 RPL_THEME3_10 F_THEME3_10 SPL_THEME4_10 RPL_THEME4_10 F_THEME4_10 SPL_THEMES_10 RPL_THEMES_10 F_TOTAL_10 E_TOTPOP_20 E_HU_20 E_HH_20 E_POV150_20 ET_POVSTATUS_20 EP_POV150_20 EPL_POV150_20 F_POV150_20 E_UNEMP_20 ET_EMPSTATUS_20 EP_UNEMP_20 EPL_UNEMP_20 F_UNEMP_20 E_HBURD_OWN_20 ET_HOUSINGCOST_OWN_20 EP_HBURD_OWN_20 EPL_HBURD_OWN_20 F_HBURD_OWN_20 E_HBURD_RENT_20 ET_HOUSINGCOST_RENT_20 EP_HBURD_RENT_20 EPL_HBURD_RENT_20 F_HBURD_RENT_20 E_HBURD_20 ET_HOUSINGCOST_20 EP_HBURD_20 EPL_HBURD_20 F_HBURD_20 E_NOHSDP_20 ET_EDSTATUS_20 EP_NOHSDP_20 EPL_NOHSDP_20 F_NOHSDP_20 E_UNINSUR_20 ET_INSURSTATUS_20 EP_UNINSUR_20 EPL_UNINSUR_20 F_UNINSUR_20 E_AGE65_20 EP_AGE65_20 EPL_AGE65_20 F_AGE65_20 E_AGE17_20 EP_AGE17_20 EPL_AGE17_20 F_AGE17_20 E_DISABL_20 ET_DISABLSTATUS_20 EP_DISABL_20 EPL_DISABL_20 F_DISABL_20 E_SNGPNT_20 ET_FAMILIES_20 EP_SNGPNT_20 EPL_SNGPNT_20 F_SNGPNT_20 E_LIMENG_20 ET_POPAGE5UP_20 EP_LIMENG_20 EPL_LIMENG_20 F_LIMENG_20 E_MINRTY_20 ET_POPETHRACE_20 EP_MINRTY_20 EPL_MINRTY_20 F_MINRTY_20 E_STRHU_20 E_MUNIT_20 EP_MUNIT_20 EPL_MUNIT_20 F_MUNIT_20 E_MOBILE_20 EP_MOBILE_20 EPL_MOBILE_20 F_MOBILE_20 E_CROWD_20 ET_OCCUPANTS_20 EP_CROWD_20 EPL_CROWD_20 F_CROWD_20 E_NOVEH_20 ET_KNOWNVEH_20 EP_NOVEH_20 EPL_NOVEH_20 F_NOVEH_20 E_GROUPQ_20 ET_HHTYPE_20 EP_GROUPQ_20 EPL_GROUPQ_20 F_GROUPQ_20 SPL_THEME1_20 RPL_THEME1_20 F_THEME1_20 SPL_THEME2_20 RPL_THEME2_20 F_THEME2_20 SPL_THEME3_20 RPL_THEME3_20 F_THEME3_20 SPL_THEME4_20 RPL_THEME4_20 F_THEME4_20 SPL_THEMES_20 RPL_THEMES_20 F_TOTAL_20 nmtc_eligibility pre10_nmtc_project_cnt pre10_nmtc_dollars pre10_nmtc_dollars_formatted post10_nmtc_project_cnt post10_nmtc_dollars post10_nmtc_dollars_formatted nmtc_flag NAME Median_Income_10 Median_Home_Value_10 Median_Income_19 Median_Home_Value_19 Median_Income_10adj Median_Home_Value_10adj Median_Income_Change Median_Income_Change_pct Median_Home_Value_Change Median_Home_Value_Change_pct housing_price_index10 housing_price_index20 county_title cbsa cbsa_code
01001020200 01001 020200 AL Alabama Autauga County 1 South Region 6 East South Central Division 2020 816 730 495 1992 24.84940 0.5954 0 68 834 8.153477 0.57540 0 49 439 11.16173 0.02067 0 105 291 36.08247 0.30190 0 154 730 21.09589 0.09312 0 339 1265 26.798419 0.8392 1 313 2012 15.55666 0.6000 0 204 10.09901 0.3419 0 597 29.55446 0.8192 1 359 1515 23.69637 0.8791 1 132 456 28.947368 0.8351 1 15 1890 0.7936508 0.40130 0 1243 2020 61.534653 0.77810 1 816 0 0.0000000 0.1224 0 34 4.1666667 0.6664 0 13 730 1.780822 0.5406 0 115 730 15.7534247 0.83820 1 0 2020 0.0000 0.3640 0 2.70312 0.5665 1 3.27660 0.8614 3 0.77810 0.7709 1 2.53160 0.5047 1 9.28942 0.6832 6 1757 720 573 384 1511 25.413633 0.6427 0 29 717 4.044630 0.41320 0 33 392 8.418367 0.03542 0 116 181 64.08840 0.9086 1 149 573 26.00349 0.40410 0 139 1313 10.586443 0.5601 0 91 1533 5.936073 0.4343 0 284 16.163916 0.5169 0 325 18.49744 0.28510 0 164 1208.000 13.576159 0.4127 0 42 359.0000 11.6991643 0.39980 0 0 1651 0.0000000 0.09479 0 1116 1757.000 63.5173591 0.759100 1 720 3 0.4166667 0.2470 0 5 0.6944444 0.5106 0 9 573 1.5706806 0.46880 0 57 573.000 9.947644 0.7317 0 212 1757 12.0660216 0.9549 1 2.45440 0.4888 0 1.70929 0.10250 0 0.759100 0.752700 1 2.91300 0.6862 1 7.835790 0.4802 2 Yes 0 0 $0 0 0 $0 0 Census Tract 202, Autauga County, Alabama 19437 138500 20154 90500 22546.92 160660 -2392.92 -0.1061307 -70160 -0.4366986 123.78 123.37 Autauga County, Alabama Montgomery-Alexander City, AL CSA CS388
01001020700 01001 020700 AL Alabama Autauga County 1 South Region 6 East South Central Division 2664 1254 1139 710 2664 26.65165 0.6328 0 29 1310 2.213741 0.05255 0 134 710 18.87324 0.13890 0 187 429 43.58974 0.47090 0 321 1139 28.18262 0.28130 0 396 1852 21.382289 0.7478 0 345 2878 11.98749 0.4459 0 389 14.60210 0.6417 0 599 22.48499 0.4007 0 510 2168 23.52399 0.8752 1 228 712 32.022472 0.8712 1 0 2480 0.0000000 0.09298 0 694 2664 26.051051 0.51380 0 1254 8 0.6379585 0.2931 0 460 36.6826156 0.9714 1 0 1139 0.000000 0.1238 0 125 1139 10.9745391 0.74770 0 0 2664 0.0000 0.3640 0 2.16035 0.4069 0 2.88178 0.6997 2 0.51380 0.5090 0 2.50000 0.4882 1 8.05593 0.5185 3 3562 1313 1248 1370 3528 38.832200 0.8512 1 128 1562 8.194622 0.79350 1 168 844 19.905213 0.44510 0 237 404 58.66337 0.8359 1 405 1248 32.45192 0.60420 0 396 2211 17.910448 0.7857 1 444 3547 12.517620 0.7758 1 355 9.966311 0.1800 0 954 26.78271 0.79230 1 629 2593.000 24.257617 0.8730 1 171 797.0000 21.4554580 0.71860 0 0 3211 0.0000000 0.09479 0 1009 3562.000 28.3267827 0.466800 0 1313 14 1.0662605 0.3165 0 443 33.7395278 0.9663 1 73 1248 5.8493590 0.82110 1 17 1248.000 1.362180 0.1554 0 112 3562 3.1443010 0.8514 1 3.81040 0.8569 4 2.65869 0.58470 2 0.466800 0.462900 0 3.11070 0.7714 3 10.046590 0.7851 9 Yes 0 0 $0 0 0 $0 0 Census Tract 207, Autauga County, Alabama 22114 93800 20934 82400 25652.24 108808 -4718.24 -0.1839309 -26408 -0.2427027 95.94 108.47 Autauga County, Alabama Montgomery-Alexander City, AL CSA CS388
01001021100 01001 021100 AL Alabama Autauga County 1 South Region 6 East South Central Division 3298 1502 1323 860 3298 26.07641 0.6211 0 297 1605 18.504673 0.94340 1 250 1016 24.60630 0.32070 0 74 307 24.10423 0.11920 0 324 1323 24.48980 0.17380 0 710 2231 31.824294 0.8976 1 654 3565 18.34502 0.7018 0 411 12.46210 0.5001 0 738 22.37720 0.3934 0 936 2861 32.71583 0.9807 1 138 825 16.727273 0.5715 0 9 3155 0.2852615 0.25010 0 1979 3298 60.006064 0.77030 1 1502 14 0.9320905 0.3234 0 659 43.8748336 0.9849 1 44 1323 3.325775 0.7062 0 137 1323 10.3552532 0.73130 0 0 3298 0.0000 0.3640 0 3.33770 0.7351 2 2.69580 0.6028 1 0.77030 0.7631 1 3.10980 0.7827 1 9.91360 0.7557 5 3499 1825 1462 1760 3499 50.300086 0.9396 1 42 966 4.347826 0.45390 0 426 1274 33.437991 0.85200 1 52 188 27.65957 0.1824 0 478 1462 32.69494 0.61110 0 422 2488 16.961415 0.7638 1 497 3499 14.204058 0.8246 1 853 24.378394 0.8688 1 808 23.09231 0.58290 0 908 2691.100 33.740844 0.9808 1 179 811.6985 22.0525243 0.73230 0 8 3248 0.2463054 0.26220 0 1986 3498.713 56.7637257 0.717500 0 1825 29 1.5890411 0.3551 0 576 31.5616438 0.9594 1 88 1462 6.0191518 0.82690 1 148 1461.993 10.123166 0.7364 0 38 3499 1.0860246 0.7013 0 3.59300 0.8073 3 3.42700 0.91560 2 0.717500 0.711400 0 3.57910 0.9216 2 11.316600 0.9150 7 Yes 0 0 $0 0 0 $0 0 Census Tract 211, Autauga County, Alabama 17997 74000 20620 88600 20876.52 85840 -256.52 -0.0122875 2760 0.0321528 134.13 145.41 Autauga County, Alabama Montgomery-Alexander City, AL CSA CS388
01003010200 01003 010200 AL Alabama Baldwin County 1 South Region 6 East South Central Division 2612 1220 1074 338 2605 12.97505 0.2907 0 44 1193 3.688181 0.14720 0 172 928 18.53448 0.13090 0 31 146 21.23288 0.09299 0 203 1074 18.90130 0.05657 0 455 1872 24.305556 0.8016 1 456 2730 16.70330 0.6445 0 401 15.35222 0.6847 0 563 21.55436 0.3406 0 410 2038 20.11776 0.7755 1 64 779 8.215661 0.2181 0 0 2510 0.0000000 0.09298 0 329 2612 12.595712 0.31130 0 1220 38 3.1147541 0.4648 0 385 31.5573770 0.9545 1 20 1074 1.862197 0.5509 0 43 1074 4.0037244 0.40880 0 0 2612 0.0000 0.3640 0 1.94057 0.3398 1 2.11188 0.2802 1 0.31130 0.3084 0 2.74300 0.6129 1 7.10675 0.3771 3 2928 1312 1176 884 2928 30.191257 0.7334 0 29 1459 1.987663 0.13560 0 71 830 8.554217 0.03726 0 134 346 38.72832 0.3964 0 205 1176 17.43197 0.12010 0 294 2052 14.327485 0.6940 0 219 2925 7.487179 0.5423 0 556 18.989071 0.6705 0 699 23.87295 0.63390 0 489 2226.455 21.963167 0.8122 1 191 783.8820 24.3659136 0.77990 1 0 2710 0.0000000 0.09479 0 398 2927.519 13.5951280 0.251100 0 1312 13 0.9908537 0.3111 0 400 30.4878049 0.9557 1 6 1176 0.5102041 0.25900 0 81 1176.202 6.886570 0.6115 0 7 2928 0.2390710 0.4961 0 2.22540 0.4183 0 2.99129 0.76340 2 0.251100 0.249000 0 2.63340 0.5496 1 8.101190 0.5207 3 Yes 0 0 $0 1 408000 $408,000 1 Census Tract 102, Baldwin County, Alabama 23862 103200 26085 136900 27679.92 119712 -1594.92 -0.0576201 17188 0.1435779 128.38 166.27 Baldwin County, Alabama Mobile-Daphne-Fairhope, AL CSA CS380
01003010500 01003 010500 AL Alabama Baldwin County 1 South Region 6 East South Central Division 4230 1779 1425 498 3443 14.46413 0.3337 0 166 1625 10.215385 0.71790 0 151 1069 14.12535 0.04638 0 196 356 55.05618 0.73830 0 347 1425 24.35088 0.17010 0 707 2945 24.006791 0.7967 1 528 4001 13.19670 0.5005 0 619 14.63357 0.6436 0 790 18.67612 0.1937 0 536 3096 17.31266 0.6572 0 165 920 17.934783 0.6102 0 20 4021 0.4973887 0.32320 0 754 4230 17.825059 0.40230 0 1779 97 5.4525014 0.5525 0 8 0.4496908 0.4600 0 63 1425 4.421053 0.7762 1 90 1425 6.3157895 0.56910 0 787 4230 18.6052 0.9649 1 2.51890 0.5121 1 2.42790 0.4539 0 0.40230 0.3986 0 3.32270 0.8628 2 8.67180 0.6054 3 5877 1975 1836 820 5244 15.636918 0.3902 0 90 2583 3.484321 0.33610 0 159 1345 11.821561 0.10530 0 139 491 28.30957 0.1924 0 298 1836 16.23094 0.09053 0 570 4248 13.418079 0.6669 0 353 5247 6.727654 0.4924 0 1109 18.870172 0.6645 0 1144 19.46571 0.34110 0 717 4102.545 17.476956 0.6332 0 103 1286.1180 8.0085961 0.23410 0 0 5639 0.0000000 0.09479 0 868 5877.481 14.7682323 0.270900 0 1975 26 1.3164557 0.3359 0 45 2.2784810 0.6271 0 9 1836 0.4901961 0.25400 0 116 1835.798 6.318779 0.5811 0 633 5877 10.7708014 0.9507 1 1.97613 0.3410 0 1.96769 0.19610 0 0.270900 0.268600 0 2.74880 0.6077 1 6.963520 0.3406 1 Yes 0 0 $0 0 0 $0 0 Census Tract 105, Baldwin County, Alabama 21585 121100 28301 148500 25038.60 140476 3262.40 0.1302948 8024 0.0571201 191.57 213.49 Baldwin County, Alabama Mobile-Daphne-Fairhope, AL CSA CS380
01003010600 01003 010600 AL Alabama Baldwin County 1 South Region 6 East South Central Division 3724 1440 1147 1973 3724 52.98067 0.9342 1 142 1439 9.867964 0.69680 0 235 688 34.15698 0.62950 0 187 459 40.74074 0.40290 0 422 1147 36.79163 0.55150 0 497 1876 26.492537 0.8354 1 511 3661 13.95794 0.5334 0 246 6.60580 0.1481 0 1256 33.72718 0.9305 1 496 2522 19.66693 0.7587 1 274 838 32.696897 0.8779 1 32 3479 0.9198045 0.42810 0 2606 3724 69.978518 0.81840 1 1440 21 1.4583333 0.3683 0 321 22.2916667 0.9036 1 97 1147 8.456844 0.8956 1 167 1147 14.5597210 0.82090 1 0 3724 0.0000 0.3640 0 3.55130 0.7859 2 3.14330 0.8145 3 0.81840 0.8108 1 3.35240 0.8725 3 10.86540 0.8550 9 4115 1534 1268 1676 3997 41.931449 0.8814 1 294 1809 16.252073 0.96740 1 341 814 41.891892 0.94320 1 204 454 44.93392 0.5438 0 545 1268 42.98107 0.83620 1 624 2425 25.731959 0.9002 1 994 4115 24.155529 0.9602 1 642 15.601458 0.4841 0 1126 27.36331 0.81750 1 568 2989.000 19.003011 0.7045 0 212 715.0000 29.6503497 0.85920 1 56 3825 1.4640523 0.53120 0 2715 4115.000 65.9781288 0.773200 1 1534 0 0.0000000 0.1079 0 529 34.4850065 0.9685 1 101 1268 7.9652997 0.87950 1 89 1268.000 7.018927 0.6184 0 17 4115 0.4131227 0.5707 0 4.54540 0.9754 5 3.39650 0.90810 2 0.773200 0.766700 1 3.14500 0.7858 2 11.860100 0.9520 10 Yes 0 0 $0 1 8000000 $8,000,000 1 Census Tract 106, Baldwin County, Alabama 17788 81600 16453 104700 20634.08 94656 -4181.08 -0.2026298 10044 0.1061105 NA NA Baldwin County, Alabama Mobile-Daphne-Fairhope, AL CSA CS380
01003011000 01003 011000 AL Alabama Baldwin County 1 South Region 6 East South Central Division 3758 2012 1576 1053 3758 28.02022 0.6597 0 66 1707 3.866432 0.16250 0 293 1297 22.59059 0.25080 0 83 279 29.74910 0.19030 0 376 1576 23.85787 0.15710 0 744 2723 27.322806 0.8465 1 996 4137 24.07542 0.8462 1 713 18.97286 0.8429 1 804 21.39436 0.3306 0 763 3295 23.15630 0.8670 1 155 1145 13.537118 0.4538 0 50 3475 1.4388489 0.51460 0 516 3758 13.730708 0.33300 0 2012 0 0.0000000 0.1224 0 606 30.1192843 0.9484 1 42 1576 2.664975 0.6476 0 96 1576 6.0913706 0.55620 0 0 3758 0.0000 0.3640 0 2.67200 0.5579 2 3.00890 0.7581 2 0.33300 0.3299 0 2.63860 0.5614 1 8.65250 0.6030 5 4921 1979 1732 1539 4908 31.356968 0.7523 1 150 2105 7.125891 0.72850 0 214 1471 14.547927 0.20260 0 59 261 22.60536 0.1167 0 273 1732 15.76212 0.07981 0 936 3332 28.091237 0.9206 1 861 4921 17.496444 0.8930 1 1039 21.113595 0.7653 1 1183 24.03983 0.64410 0 585 3738.000 15.650080 0.5371 0 81 1151.0000 7.0373588 0.19000 0 101 4546 2.2217334 0.61440 0 1244 4921.000 25.2794148 0.427800 0 1979 0 0.0000000 0.1079 0 527 26.6296109 0.9393 1 83 1732 4.7921478 0.77460 1 151 1732.000 8.718245 0.6904 0 20 4921 0.4064215 0.5688 0 3.37421 0.7528 3 2.75090 0.63780 1 0.427800 0.424200 0 3.08100 0.7597 2 9.633910 0.7366 6 Yes 0 0 $0 0 0 $0 0 Census Tract 110, Baldwin County, Alabama 19340 126400 23679 158700 22434.40 146624 1244.60 0.0554773 12076 0.0823603 129.69 188.85 Baldwin County, Alabama Mobile-Daphne-Fairhope, AL CSA CS380
01003011406 01003 011406 AL Alabama Baldwin County 1 South Region 6 East South Central Division 3317 6418 1307 583 3317 17.57612 0.4181 0 70 1789 3.912800 0.16690 0 221 685 32.26277 0.57540 0 284 622 45.65916 0.52130 0 505 1307 38.63810 0.60430 0 168 2255 7.450111 0.2800 0 919 3677 24.99320 0.8623 1 452 13.62677 0.5791 0 673 20.28942 0.2668 0 366 2769 13.21777 0.4276 0 96 887 10.822999 0.3359 0 180 3066 5.8708415 0.77920 1 473 3317 14.259873 0.34330 0 6418 3976 61.9507635 0.9655 1 384 5.9831723 0.7063 0 17 1307 1.300689 0.4632 0 10 1307 0.7651109 0.08684 0 0 3317 0.0000 0.3640 0 2.33160 0.4577 1 2.38860 0.4323 1 0.34330 0.3401 0 2.58584 0.5335 1 7.64934 0.4576 3 3226 7850 1797 228 3215 7.091757 0.1241 0 72 2055 3.503650 0.33910 0 302 1139 26.514486 0.69300 0 230 658 34.95441 0.3131 0 532 1797 29.60490 0.52020 0 128 2726 4.695525 0.2384 0 530 3226 16.429014 0.8749 1 790 24.488531 0.8715 1 342 10.60136 0.05624 0 280 2884.000 9.708738 0.1832 0 58 792.0000 7.3232323 0.20270 0 15 3107 0.4827808 0.34070 0 15 3226.000 0.4649721 0.002512 0 7850 5394 68.7133758 0.9706 1 274 3.4904459 0.6697 0 23 1797 1.2799110 0.41980 0 26 1797.000 1.446856 0.1647 0 0 3226 0.0000000 0.1831 0 2.09670 0.3785 1 1.65434 0.08785 1 0.002512 0.002491 0 2.40790 0.4381 1 6.161452 0.2215 3 Yes 0 0 $0 0 0 $0 0 Census Tract 114.06, Baldwin County, Alabama 29838 252000 32201 224200 34612.08 292320 -2411.08 -0.0696601 -68120 -0.2330323 NA NA Baldwin County, Alabama Mobile-Daphne-Fairhope, AL CSA CS380
01003011407 01003 011407 AL Alabama Baldwin County 1 South Region 6 East South Central Division 5187 6687 2066 1404 5172 27.14617 0.6423 0 172 1935 8.888889 0.63280 0 482 1433 33.63573 0.61530 0 367 633 57.97788 0.79510 1 849 2066 41.09390 0.67110 0 278 3618 7.683803 0.2906 0 1027 4945 20.76845 0.7735 1 1398 26.95200 0.9629 1 1263 24.34933 0.5302 0 596 3792 15.71730 0.5759 0 158 1633 9.675444 0.2833 0 29 4867 0.5958496 0.35240 0 170 5187 3.277424 0.07984 0 6687 2772 41.4535666 0.9251 1 197 2.9460147 0.6326 0 90 2066 4.356244 0.7729 1 0 2066 0.0000000 0.02586 0 0 5187 0.0000 0.3640 0 3.01030 0.6516 1 2.70470 0.6077 1 0.07984 0.0791 0 2.72046 0.6014 2 8.51530 0.5852 4 5608 7576 2543 1058 5602 18.886112 0.4835 0 32 2631 1.216268 0.05882 0 581 1979 29.358262 0.77080 1 309 564 54.78723 0.7671 1 890 2543 34.99803 0.67250 0 230 4433 5.188360 0.2698 0 776 5602 13.852196 0.8156 1 1527 27.228959 0.9205 1 567 10.11056 0.05099 0 615 5035.000 12.214498 0.3295 0 16 1746.0000 0.9163803 0.01566 0 0 5573 0.0000000 0.09479 0 441 5608.000 7.8637660 0.140300 0 7576 3055 40.3247096 0.9148 1 72 0.9503696 0.5383 0 0 2543 0.0000000 0.09796 0 125 2543.000 4.915454 0.4934 0 6 5608 0.1069900 0.4054 0 2.30022 0.4418 1 1.41144 0.04295 1 0.140300 0.139100 0 2.44986 0.4589 1 6.301820 0.2416 3 Yes 0 0 $0 0 0 $0 0 Census Tract 114.07, Baldwin County, Alabama 22317 292600 28418 241100 25887.72 339416 2530.28 0.0977406 -98316 -0.2896622 NA NA Baldwin County, Alabama Mobile-Daphne-Fairhope, AL CSA CS380
01003011502 01003 011502 AL Alabama Baldwin County 1 South Region 6 East South Central Division 9234 4606 3702 3160 9213 34.29936 0.7632 1 282 4002 7.046477 0.47570 0 526 2158 24.37442 0.31260 0 582 1544 37.69430 0.33410 0 1108 3702 29.92977 0.33740 0 997 6176 16.143135 0.6201 0 2074 10111 20.51231 0.7670 1 1450 15.70284 0.7043 0 2491 26.97639 0.6984 0 1542 7577 20.35106 0.7842 1 684 2718 25.165563 0.7767 1 532 8697 6.1170519 0.78590 1 3275 9234 35.466753 0.60970 0 4606 214 4.6461138 0.5268 0 828 17.9765523 0.8689 1 89 3702 2.404106 0.6192 0 293 3702 7.9146407 0.64700 0 0 9234 0.0000 0.3640 0 2.96340 0.6387 2 3.74950 0.9623 3 0.60970 0.6040 0 3.02590 0.7475 1 10.34850 0.8024 6 14165 6867 6002 2853 14165 20.141193 0.5175 0 313 7047 4.441606 0.46620 0 1181 4164 28.362152 0.74500 0 887 1838 48.25898 0.6211 0 2068 6002 34.45518 0.65900 0 1667 10750 15.506977 0.7286 0 2527 14165 17.839746 0.8980 1 3082 21.757854 0.7907 1 2506 17.69149 0.24240 0 3004 11659.000 25.765503 0.9038 1 407 3482.0000 11.6886847 0.39940 0 364 13519 2.6925068 0.65290 0 2755 14165.000 19.4493470 0.346300 0 6867 441 6.4220183 0.5555 0 526 7.6598223 0.7585 1 93 6002 1.5494835 0.46540 0 184 6002.000 3.065645 0.3373 0 0 14165 0.0000000 0.1831 0 3.26930 0.7261 1 2.98920 0.76250 2 0.346300 0.343400 0 2.29980 0.3856 1 8.904600 0.6398 4 Yes 0 0 $0 2 8860000 $8,860,000 1 Census Tract 115.02, Baldwin County, Alabama 20411 162700 22820 180400 23676.76 188732 -856.76 -0.0361857 -8332 -0.0441473 NA NA Baldwin County, Alabama Mobile-Daphne-Fairhope, AL CSA CS380

LIHTC Data

svi_divisional_lihtc_df0 <- left_join(svi_divisional_lihtc, census_pull_df, join_by("GEOID_2010_trt" == "GEOID"))

svi_divisional_lihtc_df1 <- left_join(svi_divisional_lihtc_df0, hpi_df_10_20, join_by("GEOID_2010_trt" == "GEOID10")) %>%
                          unite("county_fips", FIPS_st, FIPS_county, sep = "") 

svi_divisional_lihtc_df <- left_join(svi_divisional_lihtc_df1, msa_csa_crosswalk, join_by("county_fips" == "county_fips"))

svi_divisional_lihtc_df %>% head(10) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt county_fips FIPS_tract state state_name county region_number region division_number division E_TOTPOP_10 E_HU_10 E_HH_10 E_POV150_10 ET_POVSTATUS_10 EP_POV150_10 EPL_POV150_10 F_POV150_10 E_UNEMP_10 ET_EMPSTATUS_10 EP_UNEMP_10 EPL_UNEMP_10 F_UNEMP_10 E_HBURD_OWN_10 ET_HOUSINGCOST_OWN_10 EP_HBURD_OWN_10 EPL_HBURD_OWN_10 F_HBURD_OWN_10 E_HBURD_RENT_10 ET_HOUSINGCOST_RENT_10 EP_HBURD_RENT_10 EPL_HBURD_RENT_10 F_HBURD_RENT_10 E_HBURD_10 ET_HOUSINGCOST_10 EP_HBURD_10 EPL_HBURD_10 F_HBURD_10 E_NOHSDP_10 ET_EDSTATUS_10 EP_NOHSDP_10 EPL_NOHSDP_10 F_NOHSDP_10 E_UNINSUR_12 ET_INSURSTATUS_12 EP_UNINSUR_12 EPL_UNINSUR_12 F_UNINSUR_12 E_AGE65_10 EP_AGE65_10 EPL_AGE65_10 F_AGE65_10 E_AGE17_10 EP_AGE17_10 EPL_AGE17_10 F_AGE17_10 E_DISABL_12 ET_DISABLSTATUS_12 EP_DISABL_12 EPL_DISABL_12 F_DISABL_12 E_SNGPNT_10 ET_FAMILIES_10 EP_SNGPNT_10 EPL_SNGPNT_10 F_SNGPNT_10 E_LIMENG_10 ET_POPAGE5UP_10 EP_LIMENG_10 EPL_LIMENG_10 F_LIMENG_10 E_MINRTY_10 ET_POPETHRACE_10 EP_MINRTY_10 EPL_MINRTY_10 F_MINRTY_10 E_STRHU_10 E_MUNIT_10 EP_MUNIT_10 EPL_MUNIT_10 F_MUNIT_10 E_MOBILE_10 EP_MOBILE_10 EPL_MOBILE_10 F_MOBILE_10 E_CROWD_10 ET_OCCUPANTS_10 EP_CROWD_10 EPL_CROWD_10 F_CROWD_10 E_NOVEH_10 ET_KNOWNVEH_10 EP_NOVEH_10 EPL_NOVEH_10 F_NOVEH_10 E_GROUPQ_10 ET_HHTYPE_10 EP_GROUPQ_10 EPL_GROUPQ_10 F_GROUPQ_10 SPL_THEME1_10 RPL_THEME1_10 F_THEME1_10 SPL_THEME2_10 RPL_THEME2_10 F_THEME2_10 SPL_THEME3_10 RPL_THEME3_10 F_THEME3_10 SPL_THEME4_10 RPL_THEME4_10 F_THEME4_10 SPL_THEMES_10 RPL_THEMES_10 F_TOTAL_10 E_TOTPOP_20 E_HU_20 E_HH_20 E_POV150_20 ET_POVSTATUS_20 EP_POV150_20 EPL_POV150_20 F_POV150_20 E_UNEMP_20 ET_EMPSTATUS_20 EP_UNEMP_20 EPL_UNEMP_20 F_UNEMP_20 E_HBURD_OWN_20 ET_HOUSINGCOST_OWN_20 EP_HBURD_OWN_20 EPL_HBURD_OWN_20 F_HBURD_OWN_20 E_HBURD_RENT_20 ET_HOUSINGCOST_RENT_20 EP_HBURD_RENT_20 EPL_HBURD_RENT_20 F_HBURD_RENT_20 E_HBURD_20 ET_HOUSINGCOST_20 EP_HBURD_20 EPL_HBURD_20 F_HBURD_20 E_NOHSDP_20 ET_EDSTATUS_20 EP_NOHSDP_20 EPL_NOHSDP_20 F_NOHSDP_20 E_UNINSUR_20 ET_INSURSTATUS_20 EP_UNINSUR_20 EPL_UNINSUR_20 F_UNINSUR_20 E_AGE65_20 EP_AGE65_20 EPL_AGE65_20 F_AGE65_20 E_AGE17_20 EP_AGE17_20 EPL_AGE17_20 F_AGE17_20 E_DISABL_20 ET_DISABLSTATUS_20 EP_DISABL_20 EPL_DISABL_20 F_DISABL_20 E_SNGPNT_20 ET_FAMILIES_20 EP_SNGPNT_20 EPL_SNGPNT_20 F_SNGPNT_20 E_LIMENG_20 ET_POPAGE5UP_20 EP_LIMENG_20 EPL_LIMENG_20 F_LIMENG_20 E_MINRTY_20 ET_POPETHRACE_20 EP_MINRTY_20 EPL_MINRTY_20 F_MINRTY_20 E_STRHU_20 E_MUNIT_20 EP_MUNIT_20 EPL_MUNIT_20 F_MUNIT_20 E_MOBILE_20 EP_MOBILE_20 EPL_MOBILE_20 F_MOBILE_20 E_CROWD_20 ET_OCCUPANTS_20 EP_CROWD_20 EPL_CROWD_20 F_CROWD_20 E_NOVEH_20 ET_KNOWNVEH_20 EP_NOVEH_20 EPL_NOVEH_20 F_NOVEH_20 E_GROUPQ_20 ET_HHTYPE_20 EP_GROUPQ_20 EPL_GROUPQ_20 F_GROUPQ_20 SPL_THEME1_20 RPL_THEME1_20 F_THEME1_20 SPL_THEME2_20 RPL_THEME2_20 F_THEME2_20 SPL_THEME3_20 RPL_THEME3_20 F_THEME3_20 SPL_THEME4_20 RPL_THEME4_20 F_THEME4_20 SPL_THEMES_20 RPL_THEMES_20 F_TOTAL_20 pre10_lihtc_project_cnt pre10_lihtc_project_dollars post10_lihtc_project_cnt post10_lihtc_project_dollars lihtc_flag lihtc_eligibility NAME Median_Income_10 Median_Home_Value_10 Median_Income_19 Median_Home_Value_19 Median_Income_10adj Median_Home_Value_10adj Median_Income_Change Median_Income_Change_pct Median_Home_Value_Change Median_Home_Value_Change_pct housing_price_index10 housing_price_index20 county_title cbsa cbsa_code
34001001400 34001 001400 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 3736 1893 1503 2135 3736 57.14668 0.9592 1 411 1635 25.137615 0.9866 1 267 401 66.58354 0.9617 1 715 1102 64.88203 0.8844 1 982 1503 65.33599 0.9764 1 511 1696 30.129717 0.90050 1 527 4199 12.5506073 0.672800 0 269 7.200214 0.115100 0 1598 42.77302 0.9935 1 345 2252 15.319716 0.63090 0 787 941 83.63443 0.9990 1 63 3192 1.973684 0.54480 0 3463 3736 92.69272 0.8905 1 1893 427 22.556788 0.7770 1 0 0.000000 0.3251 0 22 1503 1.463739 0.5339 0 705 1503 46.90619 0.85330 1 0 3736 0.000000 0.3512 0 4.495500 0.9585 4 3.283300 0.8640 2 0.8905 0.8818 1 2.84050 0.66710 2 11.509800 0.9048 9 3812 1724 1549 2291 3754 61.028236 0.9760 1 380 1547 24.563672 0.9934 1 117 240 48.75000 0.9237 1 753 1309 57.52483 0.7816 1 870 1549 56.16527 0.9326 1 472 1913 24.673288 0.8987 1 294 3802 7.7327722 0.7558 1 363 9.522560 0.123100 0 1463 38.37880 0.9885 1 508 2339.000 21.718683 0.85640 1 564 948.0000 59.49367 0.9910 1 201 3159 6.3627730 0.7613 1 3389 3812.000 88.90346 0.8683 1 1724 571 33.1206497 0.8294 1 0 0.000000 0.3216 0 83 1549 5.358296 0.7754 1 661 1549.0000 42.672692 0.8448 1 10 3812 0.2623295 0.4739 0 4.5565 0.9673 5 3.720300 0.9522 4 0.8683 0.8605 1 3.2451 0.81590 3 12.390200 0.9595 13 0 0 0 0 0 Yes Census Tract 14, Atlantic County, New Jersey 16780 255800 17487 139100 19464.80 296728 -1977.80 -0.1016091 -157628 -0.5312205 NA NA Atlantic County, New Jersey Atlantic City, NJ MSA C1210
34001001500 34001 001500 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 1074 901 752 656 1074 61.08007 0.9700 1 43 270 15.925926 0.9242 1 30 70 42.85714 0.7276 0 366 682 53.66569 0.6910 0 396 752 52.65957 0.8458 1 266 921 28.881650 0.88860 1 121 1064 11.3721805 0.613100 0 385 35.847300 0.990200 1 129 12.01117 0.0617 0 321 993 32.326284 0.98460 1 62 195 31.79487 0.8408 1 125 1050 11.904762 0.85620 1 965 1074 89.85102 0.8717 1 901 636 70.588235 0.9304 1 0 0.000000 0.3251 0 10 752 1.329787 0.5133 0 626 752 83.24468 0.98880 1 0 1074 0.000000 0.3512 0 4.241700 0.9134 4 3.733500 0.9515 4 0.8717 0.8632 1 3.10880 0.77090 2 11.955700 0.9362 11 1601 976 810 1001 1601 62.523423 0.9797 1 204 563 36.234458 0.9989 1 74 110 67.27273 0.9848 1 224 700 32.00000 0.2097 0 298 810 36.79012 0.6089 0 379 1145 33.100437 0.9610 1 272 1601 16.9893816 0.9572 1 451 28.169894 0.936300 1 251 15.67770 0.1835 0 411 1350.000 30.444444 0.97330 1 196 446.0000 43.94619 0.9511 1 220 1532 14.3603133 0.8929 1 1435 1601.000 89.63148 0.8738 1 976 451 46.2090164 0.8742 1 0 0.000000 0.3216 0 24 810 2.962963 0.6412 0 546 810.0000 67.407407 0.9401 1 15 1601 0.9369144 0.6832 0 4.5057 0.9617 4 3.937100 0.9752 4 0.8738 0.8659 1 3.4603 0.87740 2 12.776900 0.9705 11 0 0 1 1497998 1 Yes Census Tract 15, Atlantic County, New Jersey 11549 172400 12339 NA 13396.84 199984 -1057.84 -0.0789619 NA NA NA NA Atlantic County, New Jersey Atlantic City, NJ MSA C1210
34001002400 34001 002400 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 3129 1759 1375 1916 3129 61.23362 0.9705 1 205 1075 19.069767 0.9574 1 28 60 46.66667 0.7987 1 670 1315 50.95057 0.6297 0 698 1375 50.76364 0.8102 1 632 2059 30.694512 0.90660 1 461 2365 19.4926004 0.873700 1 539 17.225951 0.744100 0 850 27.16523 0.7907 1 575 1736 33.122120 0.98650 1 237 594 39.89899 0.9035 1 312 2663 11.716110 0.85490 1 2357 3129 75.32758 0.8038 1 1759 1091 62.023877 0.9176 1 29 1.648664 0.7742 1 57 1375 4.145454 0.7529 1 696 1375 50.61818 0.87140 1 209 3129 6.679450 0.9003 1 4.518400 0.9608 5 4.279700 0.9831 4 0.8038 0.7960 1 4.21640 0.98320 5 13.818300 0.9835 15 2614 1726 1217 1579 2612 60.451761 0.9744 1 290 1171 24.765158 0.9939 1 69 127 54.33071 0.9521 1 538 1090 49.35780 0.5970 0 607 1217 49.87675 0.8624 1 697 1998 34.884885 0.9695 1 551 2614 21.0788064 0.9797 1 516 19.739862 0.679400 0 503 19.24254 0.3999 0 576 2111.000 27.285647 0.95060 1 257 567.0000 45.32628 0.9571 1 556 2368 23.4797297 0.9570 1 2029 2614.000 77.62050 0.8058 1 1726 1166 67.5550406 0.9204 1 0 0.000000 0.3216 0 115 1217 9.449466 0.8840 1 673 1217.0000 55.299918 0.8978 1 223 2614 8.5309870 0.9307 1 4.7799 0.9845 5 3.944000 0.9756 3 0.8058 0.7985 1 3.9545 0.96510 4 13.484200 0.9845 13 0 0 0 0 0 Yes Census Tract 24, Atlantic County, New Jersey 14657 243300 17646 302900 17002.12 282228 643.88 0.0378706 20672 0.0732457 NA NA Atlantic County, New Jersey Atlantic City, NJ MSA C1210
34003015400 34003 015400 NJ New Jersey Bergen County 1 Northeast Region 2 Middle Atlantic Division 5086 2258 2100 1485 5063 29.33044 0.7447 0 195 2873 6.787330 0.4938 0 223 478 46.65272 0.7984 1 876 1622 54.00740 0.6974 0 1099 2100 52.33333 0.8405 1 640 3682 17.381858 0.70160 0 1579 6178 25.5584331 0.949900 1 603 11.856075 0.377400 0 961 18.89501 0.2410 0 534 5000 10.680000 0.31600 0 254 1232 20.61688 0.6975 0 681 4763 14.297712 0.88510 1 3916 5086 76.99567 0.8096 1 2258 1028 45.527015 0.8820 1 0 0.000000 0.3251 0 28 2100 1.333333 0.5139 0 643 2100 30.61905 0.76370 1 57 5086 1.120724 0.7485 0 3.730500 0.8072 2 2.517000 0.5136 1 0.8096 0.8017 1 3.23320 0.81730 2 10.290300 0.7914 6 7543 3570 3054 1638 7543 21.715498 0.6364 0 320 4251 7.527641 0.7462 0 238 752 31.64894 0.6832 0 1211 2302 52.60643 0.6776 0 1449 3054 47.44597 0.8252 1 877 5631 15.574498 0.7611 1 1093 7543 14.4902559 0.9339 1 981 13.005436 0.282700 0 1174 15.56410 0.1785 0 756 6369.000 11.869995 0.37380 0 303 2013.0000 15.05216 0.5737 0 970 7103 13.6562016 0.8846 1 5610 7543.000 74.37359 0.7916 1 3570 1871 52.4089636 0.8898 1 0 0.000000 0.3216 0 258 3054 8.447937 0.8637 1 301 3054.0000 9.855927 0.5207 0 15 7543 0.1988599 0.4315 0 3.9028 0.8603 3 2.293300 0.3701 1 0.7916 0.7845 1 3.0273 0.73680 2 10.015000 0.7805 7 0 0 0 0 0 Yes Census Tract 154, Bergen County, New Jersey 24590 389800 35719 326900 28524.40 452168 7194.60 0.2522262 -125268 -0.2770386 NA NA Bergen County, New Jersey New York-Newark-Bridgeport, NY-NJ-CT-PA CSA CS408
34003018100 34003 018100 NJ New Jersey Bergen County 1 Northeast Region 2 Middle Atlantic Division 6907 2665 2569 1865 6863 27.17470 0.7140 0 242 3781 6.400423 0.4509 0 434 834 52.03837 0.8694 1 1123 1735 64.72622 0.8830 1 1557 2569 60.60724 0.9450 1 1521 4649 32.716713 0.92270 1 2703 7124 37.9421673 0.992200 1 1024 14.825539 0.598800 0 1336 19.34270 0.2674 0 452 5848 7.729138 0.11920 0 363 1614 22.49071 0.7280 0 1324 6571 20.149140 0.93510 1 4209 6907 60.93818 0.7551 1 2665 517 19.399625 0.7487 0 0 0.000000 0.3251 0 136 2569 5.293889 0.7960 1 1043 2569 40.59945 0.82350 1 0 6907 0.000000 0.3512 0 4.024800 0.8697 3 2.648500 0.5885 1 0.7551 0.7477 1 3.04450 0.74620 2 10.472900 0.8112 7 7668 2912 2816 1803 7664 23.525574 0.6750 0 370 4727 7.827375 0.7646 1 441 819 53.84615 0.9501 1 1122 1997 56.18428 0.7544 1 1563 2816 55.50426 0.9274 1 1879 5775 32.536797 0.9576 1 1695 7668 22.1048513 0.9829 1 1041 13.575900 0.316600 0 1193 15.55816 0.1784 0 711 6474.819 10.981001 0.31250 0 197 1914.1749 10.29164 0.3928 0 2045 7161 28.5574640 0.9756 1 5637 7667.630 73.51685 0.7875 1 2912 806 27.6785714 0.7973 1 0 0.000000 0.3216 0 150 2816 5.326704 0.7742 1 833 2816.0423 29.580522 0.7679 1 10 7668 0.1304121 0.3642 0 4.3075 0.9336 4 2.175900 0.2971 1 0.7875 0.7803 1 3.0252 0.73590 3 10.296100 0.8061 9 0 0 0 0 0 Yes Census Tract 181, Bergen County, New Jersey 20495 390100 29008 354100 23774.20 452516 5233.80 0.2201462 -98416 -0.2174862 NA NA Bergen County, New Jersey New York-Newark-Bridgeport, NY-NJ-CT-PA CSA CS408
34005702101 34005 702101 NJ New Jersey Burlington County 1 Northeast Region 2 Middle Atlantic Division 1637 702 483 445 1637 27.18387 0.7142 0 63 456 13.815789 0.8857 1 0 0 NaN NA NA 222 483 45.96273 0.5037 0 222 483 45.96273 0.7085 0 31 903 3.433001 0.08742 0 14 1965 0.7124682 0.008765 0 0 0.000000 0.002836 0 696 42.51680 0.9928 1 62 898 6.904232 0.08018 0 103 452 22.78761 0.7331 0 0 1379 0.000000 0.07335 0 248 1637 15.14966 0.4224 0 702 25 3.561254 0.4247 0 0 0.000000 0.3251 0 0 483 0.000000 0.1459 0 0 483 0.00000 0.01044 0 0 1637 0.000000 0.3512 0 2.404585 0.4890 1 1.882266 0.1557 1 0.4224 0.4183 0 1.25734 0.03853 0 5.966591 0.2021 2 3997 1271 1235 304 3996 7.607608 0.1919 0 46 901 5.105438 0.5252 0 0 0 NaN NA NA 731 1235 59.19028 0.8107 1 731 1235 59.19028 0.9566 1 49 1973 2.483528 0.0993 0 27 3057 0.8832188 0.0568 0 0 0.000000 0.001592 0 1651 41.30598 0.9924 1 58 1412.011 4.107616 0.01556 0 91 1092.7925 8.32729 0.3046 0 32 3347 0.9560801 0.3989 0 1411 3996.883 35.30251 0.5750 0 1271 10 0.7867821 0.2414 0 0 0.000000 0.3216 0 27 1235 2.186235 0.5699 0 11 1234.9741 0.890707 0.0533 0 0 3997 0.0000000 0.1517 0 1.8298 0.3066 1 1.713052 0.1034 1 0.5750 0.5698 0 1.3379 0.06021 0 5.455752 0.1329 2 0 0 0 0 0 Yes Census Tract 7021.01, Burlington County, New Jersey 33625 NA 44370 NA 39005.00 NA 5365.00 0.1375465 NA NA NA NA Burlington County, New Jersey Philadelphia-Camden-Vineland, PA-NJ-DE-MD CSA CS428
34005702204 34005 702204 NJ New Jersey Burlington County 1 Northeast Region 2 Middle Atlantic Division 3000 737 678 1208 2479 48.72933 0.9201 1 195 973 20.041110 0.9644 1 141 334 42.21557 0.7153 0 272 344 79.06977 0.9729 1 413 678 60.91445 0.9473 1 479 1828 26.203501 0.85830 1 243 2062 11.7846751 0.635000 0 375 12.500000 0.423100 0 875 29.16667 0.8714 1 247 1502 16.444740 0.69460 0 245 562 43.59431 0.9252 1 188 2656 7.078313 0.78350 1 1581 3000 52.70000 0.7268 0 737 0 0.000000 0.1009 0 0 0.000000 0.3251 0 118 678 17.404130 0.9662 1 79 678 11.65192 0.55970 0 521 3000 17.366667 0.9582 1 4.325100 0.9272 4 3.697800 0.9448 3 0.7268 0.7197 0 2.91010 0.69490 2 11.659800 0.9155 9 2496 766 711 436 2236 19.499105 0.5828 0 168 1119 15.013405 0.9569 1 109 476 22.89916 0.4367 0 172 234 73.50427 0.9602 1 281 710 39.57746 0.6774 0 205 1672 12.260766 0.6634 0 106 2181 4.8601559 0.5382 0 483 19.350962 0.662200 0 561 22.47596 0.6407 0 438 1641.664 26.680248 0.94370 1 95 606.3759 15.66685 0.5916 0 20 2331 0.8580009 0.3785 0 1043 2495.717 41.79160 0.6233 0 766 4 0.5221932 0.2121 0 0 0.000000 0.3216 0 51 711 7.172996 0.8340 1 39 710.5812 5.488465 0.3485 0 313 2496 12.5400641 0.9504 1 3.4187 0.7554 1 3.216700 0.8464 1 0.6233 0.6176 0 2.6666 0.57970 2 9.925300 0.7714 4 0 0 0 0 0 Yes Census Tract 7022.04, Burlington County, New Jersey 17110 231600 24236 195800 19847.60 268656 4388.40 0.2211048 -72856 -0.2711869 114.52 126.87 Burlington County, New Jersey Philadelphia-Camden-Vineland, PA-NJ-DE-MD CSA CS428
34007600200 34007 600200 NJ New Jersey Camden County 1 Northeast Region 2 Middle Atlantic Division 2152 988 790 823 2152 38.24349 0.8438 1 219 1183 18.512257 0.9528 1 115 414 27.77778 0.3413 0 299 376 79.52128 0.9744 1 414 790 52.40506 0.8417 1 485 1266 38.309637 0.95530 1 317 2208 14.3568841 0.740200 0 171 7.946097 0.147200 0 627 29.13569 0.8700 1 273 1434 19.037657 0.80620 1 176 471 37.36730 0.8842 1 326 1961 16.624171 0.90730 1 2074 2152 96.37546 0.9239 1 988 54 5.465587 0.4952 0 0 0.000000 0.3251 0 20 790 2.531646 0.6528 0 354 790 44.81013 0.84340 1 0 2152 0.000000 0.3512 0 4.333800 0.9289 4 3.614900 0.9333 4 0.9239 0.9149 1 2.66770 0.58390 1 11.540300 0.9067 10 2111 878 725 851 2111 40.312648 0.8788 1 52 913 5.695509 0.5929 0 69 375 18.40000 0.2795 0 273 350 78.00000 0.9779 1 342 725 47.17241 0.8205 1 407 1376 29.578488 0.9404 1 209 2111 9.9005211 0.8481 1 177 8.384652 0.089330 0 516 24.44339 0.7586 1 453 1595.000 28.401254 0.96070 1 200 448.0000 44.64286 0.9538 1 68 2083 3.2645223 0.6378 0 2111 2111.000 100.00000 0.9976 1 878 14 1.5945330 0.3022 0 10 1.138952 0.7512 1 0 725 0.000000 0.1194 0 239 725.0000 32.965517 0.7908 1 0 2111 0.0000000 0.1517 0 4.0807 0.8946 4 3.400230 0.8937 3 0.9976 0.9885 1 2.1153 0.31270 2 10.593830 0.8340 10 0 0 0 0 0 Yes Census Tract 6002, Camden County, New Jersey 19841 61400 18057 64600 23015.56 71224 -4958.56 -0.2154438 -6624 -0.0930024 NA NA Camden County, New Jersey Philadelphia-Camden-Vineland, PA-NJ-DE-MD CSA CS428
34007600400 34007 600400 NJ New Jersey Camden County 1 Northeast Region 2 Middle Atlantic Division 3245 1556 1038 2230 3118 71.52021 0.9895 1 355 1169 30.367836 0.9951 1 130 372 34.94624 0.5405 0 498 666 74.77477 0.9578 1 628 1038 60.50096 0.9442 1 649 1641 39.549056 0.96100 1 905 3153 28.7028227 0.968500 1 188 5.793528 0.066780 0 1123 34.60709 0.9638 1 447 2167 20.627596 0.85890 1 415 736 56.38587 0.9800 1 289 2933 9.853392 0.83120 1 3058 3245 94.23729 0.9033 1 1556 65 4.177378 0.4500 0 0 0.000000 0.3251 0 58 1038 5.587669 0.8052 1 509 1038 49.03661 0.86430 1 203 3245 6.255778 0.8951 1 4.858300 0.9853 5 3.700680 0.9459 4 0.9033 0.8945 1 3.33970 0.85670 3 12.801980 0.9715 13 3373 1557 1335 2125 3373 63.000296 0.9805 1 344 1020 33.725490 0.9987 1 100 409 24.44988 0.4886 0 678 926 73.21814 0.9591 1 778 1335 58.27715 0.9498 1 841 2163 38.881183 0.9823 1 332 3373 9.8428698 0.8461 1 629 18.648088 0.622700 0 1069 31.69286 0.9560 1 747 2304.000 32.421875 0.98120 1 440 788.0000 55.83756 0.9864 1 332 3128 10.6138107 0.8489 1 3282 3373.000 97.30210 0.9417 1 1557 100 6.4226076 0.5014 0 24 1.541426 0.7760 1 60 1335 4.494382 0.7365 0 793 1335.0000 59.400749 0.9136 1 100 3373 2.9647198 0.8250 1 4.7574 0.9834 5 4.395200 0.9861 4 0.9417 0.9332 1 3.7525 0.93580 3 13.846800 0.9859 13 0 0 0 0 0 Yes Census Tract 6004, Camden County, New Jersey 9391 70000 12266 71500 10893.56 81200 1372.44 0.1259864 -9700 -0.1194581 NA NA Camden County, New Jersey Philadelphia-Camden-Vineland, PA-NJ-DE-MD CSA CS428
34007600700 34007 600700 NJ New Jersey Camden County 1 Northeast Region 2 Middle Atlantic Division 1723 572 409 457 1342 34.05365 0.8048 1 211 657 32.115677 0.9965 1 125 237 52.74262 0.8787 1 71 172 41.27907 0.3897 0 196 409 47.92176 0.7525 1 495 1142 43.345009 0.97370 1 249 1008 24.7023810 0.942400 1 124 7.196750 0.115000 0 437 25.36274 0.6912 0 144 734 19.618529 0.82660 1 93 271 34.31734 0.8621 1 320 1565 20.447284 0.93700 1 1626 1723 94.37028 0.9044 1 572 28 4.895105 0.4761 0 0 0.000000 0.3251 0 30 409 7.334963 0.8483 1 98 409 23.96088 0.71310 0 381 1723 22.112594 0.9664 1 4.469900 0.9540 5 3.431900 0.8994 3 0.9044 0.8955 1 3.32900 0.85130 2 12.135200 0.9465 11 1618 613 517 988 1618 61.063041 0.9762 1 70 655 10.687023 0.8840 1 85 233 36.48069 0.7849 1 128 284 45.07042 0.4921 0 213 517 41.19923 0.7111 0 477 957 49.843260 0.9969 1 172 1618 10.6304079 0.8688 1 207 12.793572 0.271700 0 604 37.33004 0.9856 1 270 1013.206 26.648079 0.94310 1 149 374.2530 39.81264 0.9275 1 256 1374 18.6317322 0.9302 1 1515 1617.787 93.64644 0.9007 1 613 69 11.2561175 0.6156 0 0 0.000000 0.3216 0 54 517 10.444874 0.9008 1 83 516.9681 16.055148 0.6382 0 18 1618 1.1124845 0.7048 0 4.4370 0.9503 4 4.058100 0.9811 4 0.9007 0.8926 1 3.1810 0.79120 1 12.576800 0.9657 10 0 0 1 0 1 Yes Census Tract 6007, Camden County, New Jersey 16866 92700 15982 75500 19564.56 107532 -3582.56 -0.1831148 -32032 -0.2978834 NA NA Camden County, New Jersey Philadelphia-Camden-Vineland, PA-NJ-DE-MD CSA CS428
svi_national_lihtc_df0 <- left_join(svi_national_lihtc, census_pull_df, join_by("GEOID_2010_trt" == "GEOID"))

svi_national_lihtc_df1 <- left_join(svi_national_lihtc_df0, hpi_df_10_20, join_by("GEOID_2010_trt" == "GEOID10")) %>%
                          unite("county_fips", FIPS_st, FIPS_county, sep = "") 

svi_national_lihtc_df <- left_join(svi_national_lihtc_df1, msa_csa_crosswalk, join_by("county_fips" == "county_fips"))

svi_national_lihtc_df %>% head(10) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt county_fips FIPS_tract state state_name county region_number region division_number division E_TOTPOP_10 E_HU_10 E_HH_10 E_POV150_10 ET_POVSTATUS_10 EP_POV150_10 EPL_POV150_10 F_POV150_10 E_UNEMP_10 ET_EMPSTATUS_10 EP_UNEMP_10 EPL_UNEMP_10 F_UNEMP_10 E_HBURD_OWN_10 ET_HOUSINGCOST_OWN_10 EP_HBURD_OWN_10 EPL_HBURD_OWN_10 F_HBURD_OWN_10 E_HBURD_RENT_10 ET_HOUSINGCOST_RENT_10 EP_HBURD_RENT_10 EPL_HBURD_RENT_10 F_HBURD_RENT_10 E_HBURD_10 ET_HOUSINGCOST_10 EP_HBURD_10 EPL_HBURD_10 F_HBURD_10 E_NOHSDP_10 ET_EDSTATUS_10 EP_NOHSDP_10 EPL_NOHSDP_10 F_NOHSDP_10 E_UNINSUR_12 ET_INSURSTATUS_12 EP_UNINSUR_12 EPL_UNINSUR_12 F_UNINSUR_12 E_AGE65_10 EP_AGE65_10 EPL_AGE65_10 F_AGE65_10 E_AGE17_10 EP_AGE17_10 EPL_AGE17_10 F_AGE17_10 E_DISABL_12 ET_DISABLSTATUS_12 EP_DISABL_12 EPL_DISABL_12 F_DISABL_12 E_SNGPNT_10 ET_FAMILIES_10 EP_SNGPNT_10 EPL_SNGPNT_10 F_SNGPNT_10 E_LIMENG_10 ET_POPAGE5UP_10 EP_LIMENG_10 EPL_LIMENG_10 F_LIMENG_10 E_MINRTY_10 ET_POPETHRACE_10 EP_MINRTY_10 EPL_MINRTY_10 F_MINRTY_10 E_STRHU_10 E_MUNIT_10 EP_MUNIT_10 EPL_MUNIT_10 F_MUNIT_10 E_MOBILE_10 EP_MOBILE_10 EPL_MOBILE_10 F_MOBILE_10 E_CROWD_10 ET_OCCUPANTS_10 EP_CROWD_10 EPL_CROWD_10 F_CROWD_10 E_NOVEH_10 ET_KNOWNVEH_10 EP_NOVEH_10 EPL_NOVEH_10 F_NOVEH_10 E_GROUPQ_10 ET_HHTYPE_10 EP_GROUPQ_10 EPL_GROUPQ_10 F_GROUPQ_10 SPL_THEME1_10 RPL_THEME1_10 F_THEME1_10 SPL_THEME2_10 RPL_THEME2_10 F_THEME2_10 SPL_THEME3_10 RPL_THEME3_10 F_THEME3_10 SPL_THEME4_10 RPL_THEME4_10 F_THEME4_10 SPL_THEMES_10 RPL_THEMES_10 F_TOTAL_10 E_TOTPOP_20 E_HU_20 E_HH_20 E_POV150_20 ET_POVSTATUS_20 EP_POV150_20 EPL_POV150_20 F_POV150_20 E_UNEMP_20 ET_EMPSTATUS_20 EP_UNEMP_20 EPL_UNEMP_20 F_UNEMP_20 E_HBURD_OWN_20 ET_HOUSINGCOST_OWN_20 EP_HBURD_OWN_20 EPL_HBURD_OWN_20 F_HBURD_OWN_20 E_HBURD_RENT_20 ET_HOUSINGCOST_RENT_20 EP_HBURD_RENT_20 EPL_HBURD_RENT_20 F_HBURD_RENT_20 E_HBURD_20 ET_HOUSINGCOST_20 EP_HBURD_20 EPL_HBURD_20 F_HBURD_20 E_NOHSDP_20 ET_EDSTATUS_20 EP_NOHSDP_20 EPL_NOHSDP_20 F_NOHSDP_20 E_UNINSUR_20 ET_INSURSTATUS_20 EP_UNINSUR_20 EPL_UNINSUR_20 F_UNINSUR_20 E_AGE65_20 EP_AGE65_20 EPL_AGE65_20 F_AGE65_20 E_AGE17_20 EP_AGE17_20 EPL_AGE17_20 F_AGE17_20 E_DISABL_20 ET_DISABLSTATUS_20 EP_DISABL_20 EPL_DISABL_20 F_DISABL_20 E_SNGPNT_20 ET_FAMILIES_20 EP_SNGPNT_20 EPL_SNGPNT_20 F_SNGPNT_20 E_LIMENG_20 ET_POPAGE5UP_20 EP_LIMENG_20 EPL_LIMENG_20 F_LIMENG_20 E_MINRTY_20 ET_POPETHRACE_20 EP_MINRTY_20 EPL_MINRTY_20 F_MINRTY_20 E_STRHU_20 E_MUNIT_20 EP_MUNIT_20 EPL_MUNIT_20 F_MUNIT_20 E_MOBILE_20 EP_MOBILE_20 EPL_MOBILE_20 F_MOBILE_20 E_CROWD_20 ET_OCCUPANTS_20 EP_CROWD_20 EPL_CROWD_20 F_CROWD_20 E_NOVEH_20 ET_KNOWNVEH_20 EP_NOVEH_20 EPL_NOVEH_20 F_NOVEH_20 E_GROUPQ_20 ET_HHTYPE_20 EP_GROUPQ_20 EPL_GROUPQ_20 F_GROUPQ_20 SPL_THEME1_20 RPL_THEME1_20 F_THEME1_20 SPL_THEME2_20 RPL_THEME2_20 F_THEME2_20 SPL_THEME3_20 RPL_THEME3_20 F_THEME3_20 SPL_THEME4_20 RPL_THEME4_20 F_THEME4_20 SPL_THEMES_20 RPL_THEMES_20 F_TOTAL_20 pre10_lihtc_project_cnt pre10_lihtc_project_dollars post10_lihtc_project_cnt post10_lihtc_project_dollars lihtc_flag lihtc_eligibility NAME Median_Income_10 Median_Home_Value_10 Median_Income_19 Median_Home_Value_19 Median_Income_10adj Median_Home_Value_10adj Median_Income_Change Median_Income_Change_pct Median_Home_Value_Change Median_Home_Value_Change_pct housing_price_index10 housing_price_index20 county_title cbsa cbsa_code
01005950700 01005 950700 AL Alabama Barbour County 1 South Region 6 East South Central Division 1753 687 563 615 1628 37.77641 0.8088 1 17 667 2.548726 0.06941 0 41 376 10.90426 0.01945 0 62 187 33.15508 0.24640 0 103 563 18.29485 0.04875 0 264 1208 21.85430 0.7570 1 201 1527 13.163065 0.4991 0 368 20.992584 0.89510 1 462 26.354820 0.66130 0 211 1085 19.44700 0.7505 1 107 399 26.81704 0.8048 1 0 1628 0.0000000 0.09298 0 861 1753 49.11580 0.7101 0 687 17 2.4745269 0.4324 0 38 5.5312955 0.6970 0 3 563 0.5328597 0.3037 0 19 563 3.374778 0.3529 0 233 1753 13.29150 0.9517 1 2.18306 0.4137 2 3.20468 0.8377 3 0.7101 0.7035 0 2.7377 0.6100 1 8.83554 0.6264 6 1527 691 595 565 1365 41.39194 0.8765 1 37 572 6.468532 0.6776 0 70 376 18.617021 0.38590 0 92 219 42.009132 0.47360 0 162 595 27.22689 0.44540 0 280 1114 25.13465 0.8942 1 105 1378 7.619739 0.5505 0 383 25.081860 0.88450 1 337 22.069417 0.51380 0 237 1041.0000 22.76657 0.8360 1 144 413.0000 34.86683 0.9114 1 11 1466 0.7503411 0.40700 0 711 1527.0000 46.56189 0.6441 0 691 13 1.8813314 0.3740 0 37 5.3545586 0.7152 0 0 595 0.0000000 0.09796 0 115 595.0000 19.327731 0.8859 1 149 1527 9.7576948 0.9470 1 3.44420 0.7707 2 3.55270 0.9403 3 0.6441 0.6387 0 3.02006 0.7337 2 10.66106 0.8537 7 0 0 0 0 0 Yes Census Tract 9507, Barbour County, Alabama 15257 133700 17244 137500 17698.12 155092 -454.12 -0.0256592 -17592 -0.1134294 131.05 135.61 Barbour County, Alabama Eufaula, AL-GA MicroSA C2164
01011952100 01011 952100 AL Alabama Bullock County 1 South Region 6 East South Central Division 1652 796 554 564 1652 34.14044 0.7613 1 46 816 5.637255 0.33630 0 96 458 20.96070 0.19930 0 62 96 64.58333 0.89170 1 158 554 28.51986 0.29220 0 271 1076 25.18587 0.8163 1 155 1663 9.320505 0.3183 0 199 12.046005 0.47180 0 420 25.423729 0.60240 0 327 1279 25.56685 0.9151 1 137 375 36.53333 0.9108 1 0 1590 0.0000000 0.09298 0 1428 1652 86.44068 0.8939 1 796 0 0.0000000 0.1224 0 384 48.2412060 0.9897 1 19 554 3.4296029 0.7145 0 45 554 8.122744 0.6556 0 0 1652 0.00000 0.3640 0 2.52440 0.5138 2 2.99308 0.7515 2 0.8939 0.8856 1 2.8462 0.6637 1 9.25758 0.6790 6 1382 748 549 742 1382 53.69030 0.9560 1 40 511 7.827789 0.7730 1 110 402 27.363184 0.71780 0 45 147 30.612245 0.23070 0 155 549 28.23315 0.47730 0 181 905 20.00000 0.8253 1 232 1382 16.787265 0.8813 1 164 11.866860 0.27170 0 250 18.089725 0.26290 0 258 1132.0000 22.79152 0.8368 1 99 279.0000 35.48387 0.9162 1 33 1275 2.5882353 0.64520 0 1347 1382.0000 97.46744 0.9681 1 748 0 0.0000000 0.1079 0 375 50.1336898 0.9922 1 0 549 0.0000000 0.09796 0 37 549.0000 6.739526 0.6039 0 0 1382 0.0000000 0.1831 0 3.91290 0.8785 4 2.93280 0.7342 2 0.9681 0.9599 1 1.98506 0.2471 1 9.79886 0.7570 8 0 0 0 0 0 Yes Census Tract 9521, Bullock County, Alabama 19754 58200 18598 66900 22914.64 67512 -4316.64 -0.1883791 -612 -0.0090651 NA NA NA NA NA
01015000300 01015 000300 AL Alabama Calhoun County 1 South Region 6 East South Central Division 3074 1635 1330 1904 3067 62.08021 0.9710 1 293 1362 21.512482 0.96630 1 180 513 35.08772 0.65450 0 383 817 46.87882 0.55040 0 563 1330 42.33083 0.70280 0 720 2127 33.85049 0.9148 1 628 2835 22.151675 0.8076 1 380 12.361744 0.49340 0 713 23.194535 0.45030 0 647 2111 30.64898 0.9708 1 298 773 38.55110 0.9247 1 0 2878 0.0000000 0.09298 0 2623 3074 85.32856 0.8883 1 1635 148 9.0519878 0.6465 0 6 0.3669725 0.4502 0 68 1330 5.1127820 0.8082 1 303 1330 22.781955 0.9029 1 0 3074 0.00000 0.3640 0 4.36250 0.9430 4 2.93218 0.7233 2 0.8883 0.8800 1 3.1718 0.8070 2 11.35478 0.9009 9 2390 1702 1282 1287 2390 53.84937 0.9566 1 102 1066 9.568480 0.8541 1 158 609 25.944171 0.67520 0 286 673 42.496285 0.48560 0 444 1282 34.63339 0.66340 0 467 1685 27.71513 0.9180 1 369 2379 15.510719 0.8562 1 342 14.309623 0.40850 0 548 22.928870 0.57100 0 647 1831.0000 35.33588 0.9862 1 202 576.0000 35.06944 0.9130 1 16 2134 0.7497657 0.40690 0 1896 2390.0000 79.33054 0.8451 1 1702 96 5.6404230 0.5329 0 0 0.0000000 0.2186 0 0 1282 0.0000000 0.09796 0 186 1282.0000 14.508580 0.8308 1 43 2390 1.7991632 0.7727 1 4.24830 0.9395 4 3.28560 0.8773 2 0.8451 0.8379 1 2.45296 0.4602 2 10.83196 0.8718 9 0 0 0 0 0 Yes Census Tract 3, Calhoun County, Alabama 12211 41700 18299 51300 14164.76 48372 4134.24 0.2918680 2928 0.0605309 NA NA Calhoun County, Alabama Anniston-Oxford, AL MSA C1150
01015000500 01015 000500 AL Alabama Calhoun County 1 South Region 6 East South Central Division 1731 1175 743 1042 1619 64.36072 0.9767 1 124 472 26.271186 0.98460 1 136 461 29.50108 0.48970 0 163 282 57.80142 0.79190 1 299 743 40.24226 0.64910 0 340 1270 26.77165 0.8389 1 460 1794 25.641026 0.8722 1 271 15.655690 0.70190 0 368 21.259388 0.32190 0 507 1449 34.98965 0.9885 1 150 386 38.86010 0.9269 1 0 1677 0.0000000 0.09298 0 1559 1731 90.06355 0.9123 1 1175 50 4.2553191 0.5128 0 4 0.3404255 0.4480 0 0 743 0.0000000 0.1238 0 122 743 16.419919 0.8473 1 0 1731 0.00000 0.3640 0 4.32150 0.9362 4 3.03218 0.7679 2 0.9123 0.9038 1 2.2959 0.3818 1 10.56188 0.8244 8 940 907 488 586 940 62.34043 0.9815 1 59 297 19.865320 0.9833 1 100 330 30.303030 0.79220 1 58 158 36.708861 0.34970 0 158 488 32.37705 0.60200 0 199 795 25.03145 0.8930 1 118 940 12.553192 0.7770 1 246 26.170213 0.90530 1 118 12.553192 0.08233 0 383 822.5089 46.56484 0.9984 1 30 197.8892 15.16000 0.5363 0 0 889 0.0000000 0.09479 0 898 940.3866 95.49264 0.9489 1 907 0 0.0000000 0.1079 0 2 0.2205072 0.4456 0 2 488 0.4098361 0.23670 0 146 487.6463 29.939736 0.9404 1 0 940 0.0000000 0.1831 0 4.23680 0.9379 4 2.61712 0.5593 2 0.9489 0.9409 1 1.91370 0.2196 1 9.71652 0.7468 8 0 0 0 0 0 Yes Census Tract 5, Calhoun County, Alabama 11742 38800 13571 38800 13620.72 45008 -49.72 -0.0036503 -6208 -0.1379310 NA NA Calhoun County, Alabama Anniston-Oxford, AL MSA C1150
01015000600 01015 000600 AL Alabama Calhoun County 1 South Region 6 East South Central Division 2571 992 796 1394 2133 65.35396 0.9789 1 263 905 29.060773 0.98990 1 121 306 39.54248 0.75940 1 209 490 42.65306 0.44810 0 330 796 41.45729 0.68030 0 641 1556 41.19537 0.9554 1 416 1760 23.636364 0.8383 1 220 8.556982 0.24910 0 584 22.714897 0.41610 0 539 1353 39.83740 0.9955 1 243 466 52.14592 0.9783 1 30 2366 1.2679628 0.48990 0 1944 2571 75.61260 0.8440 1 992 164 16.5322581 0.7673 1 8 0.8064516 0.5110 0 46 796 5.7788945 0.8329 1 184 796 23.115578 0.9049 1 614 2571 23.88176 0.9734 1 4.44280 0.9548 4 3.12890 0.8088 2 0.8440 0.8362 1 3.9895 0.9792 4 12.40520 0.9696 11 1950 964 719 837 1621 51.63479 0.9467 1 157 652 24.079755 0.9922 1 22 364 6.043956 0.01547 0 129 355 36.338028 0.34200 0 151 719 21.00139 0.23030 0 363 1387 26.17159 0.9048 1 351 1613 21.760694 0.9435 1 249 12.769231 0.32090 0 356 18.256410 0.27140 0 332 1259.7041 26.35540 0.9135 1 136 435.6156 31.22018 0.8775 1 0 1891 0.0000000 0.09479 0 1463 1949.9821 75.02633 0.8219 1 964 14 1.4522822 0.3459 0 8 0.8298755 0.5269 0 19 719 2.6425591 0.61120 0 197 719.0542 27.397100 0.9316 1 329 1950 16.8717949 0.9655 1 4.01750 0.9001 4 2.47809 0.4764 2 0.8219 0.8149 1 3.38110 0.8712 2 10.69859 0.8583 9 0 0 0 0 0 Yes Census Tract 6, Calhoun County, Alabama 10958 48000 14036 43300 12711.28 55680 1324.72 0.1042161 -12380 -0.2223420 NA NA Calhoun County, Alabama Anniston-Oxford, AL MSA C1150
01015002101 01015 002101 AL Alabama Calhoun County 1 South Region 6 East South Central Division 3872 1454 1207 1729 2356 73.38710 0.9916 1 489 2020 24.207921 0.97860 1 20 168 11.90476 0.02541 0 718 1039 69.10491 0.93320 1 738 1207 61.14333 0.96900 1 113 725 15.58621 0.6035 0 664 3943 16.839970 0.6495 0 167 4.313016 0.05978 0 238 6.146694 0.02255 0 264 2359 11.19118 0.3027 0 94 263 35.74144 0.9050 1 46 3769 1.2204829 0.48250 0 1601 3872 41.34814 0.6572 0 1454 761 52.3383769 0.9504 1 65 4.4704264 0.6738 0 5 1207 0.4142502 0.2791 0 113 1207 9.362055 0.7004 0 1516 3872 39.15289 0.9860 1 4.19220 0.9133 3 1.77253 0.1304 1 0.6572 0.6511 0 3.5897 0.9337 2 10.21163 0.7885 6 3238 1459 1014 1082 1836 58.93246 0.9735 1 251 1403 17.890235 0.9767 1 31 155 20.000000 0.44920 0 515 859 59.953434 0.85540 1 546 1014 53.84615 0.95350 1 134 916 14.62882 0.7033 0 251 3238 7.751699 0.5588 0 167 5.157505 0.03597 0 169 5.219271 0.02111 0 323 1667.0000 19.37612 0.7205 0 94 277.0000 33.93502 0.9040 1 0 3164 0.0000000 0.09479 0 1045 3238.0000 32.27301 0.5125 0 1459 607 41.6038382 0.9185 1 65 4.4551062 0.6949 0 24 1014 2.3668639 0.57900 0 85 1014.0000 8.382643 0.6775 0 1402 3238 43.2983323 0.9876 1 4.16580 0.9263 3 1.77637 0.1225 1 0.5125 0.5082 0 3.85750 0.9661 2 10.31217 0.8160 6 0 0 0 0 0 Yes Census Tract 21.01, Calhoun County, Alabama 4968 92000 9312 153500 5762.88 106720 3549.12 0.6158587 46780 0.4383433 NA NA Calhoun County, Alabama Anniston-Oxford, AL MSA C1150
01015002300 01015 002300 AL Alabama Calhoun County 1 South Region 6 East South Central Division 3882 1861 1608 1366 3882 35.18805 0.7753 1 186 1539 12.085770 0.80740 1 284 1109 25.60866 0.35530 0 202 499 40.48096 0.39670 0 486 1608 30.22388 0.34700 0 727 2610 27.85441 0.8534 1 547 3706 14.759849 0.5669 0 716 18.444101 0.82530 1 904 23.286966 0.45720 0 719 2919 24.63172 0.8986 1 207 1191 17.38035 0.5923 0 0 3720 0.0000000 0.09298 0 490 3882 12.62236 0.3118 0 1861 38 2.0419130 0.4070 0 199 10.6931757 0.7836 1 52 1608 3.2338308 0.6986 0 166 1608 10.323383 0.7304 0 0 3882 0.00000 0.3640 0 3.35000 0.7384 3 2.86638 0.6919 2 0.3118 0.3089 0 2.9836 0.7289 1 9.51178 0.7100 6 3265 1774 1329 1103 3265 33.78254 0.7880 1 122 1422 8.579465 0.8131 1 101 844 11.966825 0.10960 0 126 485 25.979381 0.15930 0 227 1329 17.08051 0.11070 0 267 2122 12.58247 0.6388 0 328 3265 10.045942 0.6808 0 440 13.476263 0.36070 0 843 25.819296 0.74470 0 530 2422.0000 21.88274 0.8097 1 254 861.0000 29.50058 0.8574 1 0 3026 0.0000000 0.09479 0 811 3265.0000 24.83920 0.4221 0 1774 7 0.3945885 0.2444 0 338 19.0529876 0.8924 1 19 1329 1.4296464 0.44520 0 120 1329.0000 9.029345 0.7016 0 0 3265 0.0000000 0.1831 0 3.03140 0.6608 2 2.86729 0.7016 2 0.4221 0.4185 0 2.46670 0.4669 1 8.78749 0.6230 5 0 0 0 0 0 Yes Census Tract 23, Calhoun County, Alabama 15086 77500 21540 78500 17499.76 89900 4040.24 0.2308740 -11400 -0.1268076 120.54 131.82 Calhoun County, Alabama Anniston-Oxford, AL MSA C1150
01023956700 01023 956700 AL Alabama Choctaw County 1 South Region 6 East South Central Division 3011 1772 1179 1715 3011 56.95782 0.9531 1 266 890 29.887640 0.99100 1 267 1035 25.79710 0.36240 0 79 144 54.86111 0.73440 0 346 1179 29.34690 0.31850 0 738 2053 35.94739 0.9287 1 543 2904 18.698347 0.7133 0 569 18.897376 0.84040 1 648 21.521089 0.33840 0 813 2273 35.76771 0.9901 1 252 771 32.68482 0.8778 1 0 2880 0.0000000 0.09298 0 2455 3011 81.53437 0.8712 1 1772 38 2.1444695 0.4136 0 485 27.3702032 0.9349 1 72 1179 6.1068702 0.8435 1 109 1179 9.245123 0.6964 0 0 3011 0.00000 0.3640 0 3.90460 0.8597 3 3.13968 0.8131 3 0.8712 0.8631 1 3.2524 0.8387 2 11.16788 0.8840 9 3335 1912 1362 1135 3313 34.25898 0.7948 1 188 1147 16.390584 0.9686 1 212 1058 20.037807 0.45090 0 27 304 8.881579 0.02679 0 239 1362 17.54772 0.12350 0 466 2537 18.36815 0.7948 1 495 3335 14.842579 0.8413 1 791 23.718141 0.85250 1 613 18.380810 0.27840 0 884 2714.0000 32.57185 0.9752 1 230 918.0000 25.05447 0.7925 1 25 3103 0.8056719 0.41920 0 2637 3335.0000 79.07046 0.8436 1 1912 0 0.0000000 0.1079 0 758 39.6443515 0.9799 1 16 1362 1.1747430 0.40060 0 75 1362.0000 5.506608 0.5316 0 8 3335 0.2398801 0.4965 0 3.52300 0.7901 4 3.31780 0.8870 3 0.8436 0.8365 1 2.51650 0.4924 1 10.20090 0.8033 9 0 0 0 0 0 Yes Census Tract 9567, Choctaw County, Alabama 12737 60900 16852 63400 14774.92 70644 2077.08 0.1405815 -7244 -0.1025423 NA NA NA NA NA
01023957000 01023 957000 AL Alabama Choctaw County 1 South Region 6 East South Central Division 2567 1187 916 767 2567 29.87924 0.6933 0 145 1060 13.679245 0.86050 1 101 719 14.04729 0.04540 0 43 197 21.82741 0.09791 0 144 916 15.72052 0.02333 0 355 1704 20.83333 0.7366 0 289 2296 12.587108 0.4736 0 324 12.621737 0.51120 0 688 26.801714 0.68810 0 572 1746 32.76060 0.9809 1 121 636 19.02516 0.6414 0 5 2283 0.2190101 0.22520 0 1314 2567 51.18816 0.7225 0 1187 0 0.0000000 0.1224 0 335 28.2224094 0.9394 1 13 916 1.4192140 0.4834 0 70 916 7.641921 0.6353 0 0 2567 0.00000 0.3640 0 2.78733 0.5903 1 3.04680 0.7745 1 0.7225 0.7158 0 2.5445 0.5114 1 9.10113 0.6601 3 2077 1158 866 759 2072 36.63127 0.8256 1 61 780 7.820513 0.7726 1 106 735 14.421769 0.19760 0 11 131 8.396947 0.02525 0 117 866 13.51039 0.04053 0 351 1464 23.97541 0.8815 1 205 2077 9.870005 0.6729 0 402 19.354839 0.68820 0 496 23.880597 0.63430 0 466 1576.0000 29.56853 0.9544 1 154 612.0000 25.16340 0.7942 1 0 2002 0.0000000 0.09479 0 1018 2077.0000 49.01300 0.6638 0 1158 0 0.0000000 0.1079 0 439 37.9101900 0.9766 1 0 866 0.0000000 0.09796 0 42 866.0000 4.849884 0.4884 0 5 2077 0.2407318 0.4971 0 3.19313 0.7061 3 3.16589 0.8369 2 0.6638 0.6582 0 2.16796 0.3247 1 9.19078 0.6792 6 0 0 0 0 0 Yes Census Tract 9570, Choctaw County, Alabama 16224 51600 21740 74000 18819.84 59856 2920.16 0.1551639 14144 0.2363005 NA NA NA NA NA
01031010500 01031 010500 AL Alabama Coffee County 1 South Region 6 East South Central Division 4529 1950 1664 1649 4022 40.99950 0.8432 1 114 1424 8.005618 0.56260 0 309 1057 29.23368 0.48130 0 251 607 41.35091 0.41690 0 560 1664 33.65385 0.45740 0 1269 3370 37.65579 0.9387 1 516 4279 12.058892 0.4492 0 832 18.370501 0.82310 1 894 19.739457 0.23950 0 1023 3404 30.05288 0.9666 1 303 1112 27.24820 0.8108 1 43 4270 1.0070258 0.44510 0 1761 4529 38.88276 0.6383 0 1950 6 0.3076923 0.2576 0 276 14.1538462 0.8279 1 8 1664 0.4807692 0.2925 0 125 1664 7.512019 0.6289 0 507 4529 11.19452 0.9441 1 3.25110 0.7138 2 3.28510 0.8639 3 0.6383 0.6324 0 2.9510 0.7136 2 10.12550 0.7794 7 4815 2118 1731 1329 4470 29.73154 0.7256 0 147 1903 7.724645 0.7670 1 209 1256 16.640127 0.29310 0 208 475 43.789474 0.51620 0 417 1731 24.09012 0.33700 0 953 3728 25.56330 0.8985 1 668 4485 14.894091 0.8425 1 1053 21.869159 0.79500 1 766 15.908619 0.16760 0 1010 3719.0000 27.15784 0.9262 1 243 1133.0000 21.44748 0.7184 0 1 4577 0.0218484 0.19150 0 1643 4815.0000 34.12253 0.5321 0 2118 0 0.0000000 0.1079 0 475 22.4268178 0.9157 1 37 1731 2.1374928 0.55080 0 144 1731.0000 8.318891 0.6750 0 330 4815 6.8535826 0.9282 1 3.57060 0.8018 3 2.79870 0.6649 2 0.5321 0.5276 0 3.17760 0.7990 2 10.07900 0.7892 7 0 0 0 0 0 Yes Census Tract 105, Coffee County, Alabama 14641 88000 21367 78100 16983.56 102080 4383.44 0.2580990 -23980 -0.2349138 128.88 137.26 Coffee County, Alabama Dothan-Enterprise-Ozark, AL CSA CS222

Log NMTC and LIHTC Variables

svi_national_nmtc_df$Median_Income_10adj_log <- log(svi_national_nmtc_df$Median_Income_10adj)
svi_national_nmtc_df$Median_Income_19_log <- log(svi_national_nmtc_df$Median_Income_19)

svi_national_nmtc_df$Median_Home_Value_10adj_log = log(svi_national_nmtc_df$Median_Home_Value_10adj)
svi_national_nmtc_df$Median_Home_Value_19_log = log(svi_national_nmtc_df$Median_Home_Value_19)

svi_national_nmtc_df$housing_price_index10_log = log(svi_national_nmtc_df$housing_price_index10)
svi_national_nmtc_df$housing_price_index20_log = log(svi_national_nmtc_df$housing_price_index20)

svi_divisional_nmtc_df$Median_Income_10adj_log <- log(svi_divisional_nmtc_df$Median_Income_10adj)
svi_divisional_nmtc_df$Median_Income_19_log <- log(svi_divisional_nmtc_df$Median_Income_19)

svi_divisional_nmtc_df$Median_Home_Value_10adj_log = log(svi_divisional_nmtc_df$Median_Home_Value_10adj)
svi_divisional_nmtc_df$Median_Home_Value_19_log = log(svi_divisional_nmtc_df$Median_Home_Value_19)

svi_divisional_nmtc_df$housing_price_index10_log = log(svi_divisional_nmtc_df$housing_price_index10)
svi_divisional_nmtc_df$housing_price_index20_log = log(svi_divisional_nmtc_df$housing_price_index20)

svi_national_lihtc_df$Median_Income_10adj_log <- log(svi_national_lihtc_df$Median_Income_10adj)
svi_national_lihtc_df$Median_Income_19_log <- log(svi_national_lihtc_df$Median_Income_19)

svi_national_lihtc_df$Median_Home_Value_10adj_log = log(svi_national_lihtc_df$Median_Home_Value_10adj)
svi_national_lihtc_df$Median_Home_Value_19_log = log(svi_national_lihtc_df$Median_Home_Value_19)

svi_national_lihtc_df$housing_price_index10_log = log(svi_national_lihtc_df$housing_price_index10)
svi_national_lihtc_df$housing_price_index20_log = log(svi_national_lihtc_df$housing_price_index20)

svi_divisional_lihtc_df$Median_Income_10adj_log <- log(svi_divisional_lihtc_df$Median_Income_10adj)
svi_divisional_lihtc_df$Median_Income_19_log <- log(svi_divisional_lihtc_df$Median_Income_19)

svi_divisional_lihtc_df$Median_Home_Value_10adj_log = log(svi_divisional_lihtc_df$Median_Home_Value_10adj)
svi_divisional_lihtc_df$Median_Home_Value_19_log = log(svi_divisional_lihtc_df$Median_Home_Value_19)

svi_divisional_lihtc_df$housing_price_index10_log = log(svi_divisional_lihtc_df$housing_price_index10)
svi_divisional_lihtc_df$housing_price_index20_log = log(svi_divisional_lihtc_df$housing_price_index20)

Diff-in-Diff Models

NMTC Evaluation

Divisional SVI

# Create 2010 df, create post variable and set to 0, create year variable and set to 2010
nmtc_did10_div_svi <- svi_divisional_nmtc_df %>% 
  select(GEOID_2010_trt, cbsa, F_THEME1_10, F_THEME2_10, F_THEME3_10, F_THEME4_10, F_TOTAL_10, nmtc_flag) %>% 
  mutate(post = 0,
         year = 2010) %>%
  rename("treat" = "nmtc_flag",
         "SVI_FLAG_COUNT_SES" = "F_THEME1_10",
         "SVI_FLAG_COUNT_HHCHAR" = "F_THEME2_10",
         "SVI_FLAG_COUNT_REM" = "F_THEME3_10",
         "SVI_FLAG_COUNT_HOUSETRANSPT" = "F_THEME4_10",
         "SVI_FLAG_COUNT_OVERALL" = "F_TOTAL_10") 

nrow(nmtc_did10_div_svi)
## [1] 3704
# Create 2020 df, create post variable and set to 1, create year variable and set to 2020
nmtc_did20_div_svi <- svi_divisional_nmtc_df %>% 
  select(GEOID_2010_trt, cbsa, F_THEME1_20, F_THEME2_20, F_THEME3_20, F_THEME4_20, F_TOTAL_20, nmtc_flag) %>% 
  mutate(post = 1,
         year = 2020) %>%
  rename("treat" = "nmtc_flag",
         "SVI_FLAG_COUNT_SES" = "F_THEME1_20",
         "SVI_FLAG_COUNT_HHCHAR" = "F_THEME2_20",
         "SVI_FLAG_COUNT_REM" = "F_THEME3_20",
         "SVI_FLAG_COUNT_HOUSETRANSPT" = "F_THEME4_20",
         "SVI_FLAG_COUNT_OVERALL" = "F_TOTAL_20"
  )


nrow(nmtc_did20_div_svi)
## [1] 3704
nmtc_diff_in_diff_div_svi <- bind_rows(nmtc_did10_div_svi, nmtc_did20_div_svi)

nmtc_diff_in_diff_div_svi <- nmtc_diff_in_diff_div_svi %>% arrange(post, treat, GEOID_2010_trt)

nrow(nmtc_diff_in_diff_div_svi)
## [1] 7408

Divisional Median Income

# Create 2010 df, create post variable and set to 0, create year variable and set to 2010, remove any tracts that don't have data for 2010 and 2019
nmtc_did10_div_inc <- svi_divisional_nmtc_df %>% 
  filter(!is.na(Median_Income_10adj_log)) %>% filter(!is.na(Median_Income_19_log)) %>%
  select(GEOID_2010_trt, cbsa, Median_Income_10adj_log, nmtc_flag) %>% 
  mutate(post = 0,
         year = 2010) %>%
  rename("treat" = "nmtc_flag",
         "MEDIAN_INCOME" = "Median_Income_10adj_log") 


nrow(nmtc_did10_div_inc)
## [1] 3703
# Create 2019 df, create post variable and set to 1, create year variable and set to 2019, remove any tracts that don't have data for 2010 and 2019
nmtc_did19_div_inc <- svi_divisional_nmtc_df %>% 
  filter(!is.na(Median_Income_10adj_log)) %>% filter(!is.na(Median_Income_19_log)) %>%
  select(GEOID_2010_trt, cbsa, Median_Income_19_log, nmtc_flag) %>% 
  mutate(post = 1,
         year = 2019) %>%
  rename("treat" = "nmtc_flag",
         "MEDIAN_INCOME" = "Median_Income_19_log") 


nrow(nmtc_did19_div_inc)
## [1] 3703
nmtc_diff_in_diff_div_inc <- bind_rows(nmtc_did10_div_inc, nmtc_did19_div_inc)

nmtc_diff_in_diff_div_inc <- nmtc_diff_in_diff_div_inc %>% arrange(post, treat, GEOID_2010_trt)

nrow(nmtc_diff_in_diff_div_inc)
## [1] 7406

Divisional Home Value

nmtc_did10_div_mhv <- svi_divisional_nmtc_df %>% 
  filter(!is.na(Median_Home_Value_10adj_log)) %>% filter(!is.na(Median_Home_Value_19_log)) %>%
  select(GEOID_2010_trt, cbsa, Median_Home_Value_10adj_log, nmtc_flag) %>% 
  mutate(post = 0,
         year = 2010) %>%
  rename("treat" = "nmtc_flag",
         "MEDIAN_HOME_VALUE" = "Median_Home_Value_10adj_log") 


nrow(nmtc_did10_div_mhv)
## [1] 3479
nmtc_did19_div_mhv <- svi_divisional_nmtc_df %>% 
  filter(!is.na(Median_Home_Value_10adj_log)) %>% filter(!is.na(Median_Home_Value_19_log)) %>%
  select(GEOID_2010_trt, cbsa, Median_Home_Value_19_log, nmtc_flag) %>% 
  mutate(post = 1,
         year = 2019) %>%
  rename("treat" = "nmtc_flag",
         "MEDIAN_HOME_VALUE" = "Median_Home_Value_19_log") 


nrow(nmtc_did19_div_mhv)
## [1] 3479
nmtc_diff_in_diff_div_mhv <- bind_rows(nmtc_did10_div_mhv, nmtc_did19_div_mhv)

nmtc_diff_in_diff_div_mhv <- nmtc_diff_in_diff_div_mhv %>% arrange(post, treat, GEOID_2010_trt)

nrow(nmtc_diff_in_diff_div_mhv)
## [1] 6958

Divisional House Price Index

nmtc_did10_div_hpi <- svi_divisional_nmtc_df %>% 
  filter(!is.na(housing_price_index10_log)) %>% filter(!is.na(housing_price_index20_log)) %>%
  select(GEOID_2010_trt, cbsa, housing_price_index10_log, nmtc_flag) %>% 
  mutate(post = 0,
         year = 2010) %>%
  rename("treat" = "nmtc_flag",
         "HOUSE_PRICE_INDEX" = "housing_price_index10_log") 


nrow(nmtc_did10_div_hpi)
## [1] 1026
nmtc_did20_div_hpi <- svi_divisional_nmtc_df %>% 
  filter(!is.na(housing_price_index10_log)) %>% filter(!is.na(housing_price_index20_log)) %>%
  select(GEOID_2010_trt, cbsa, housing_price_index20_log, nmtc_flag) %>% 
  mutate(post = 1,
         year = 2020) %>%
  rename("treat" = "nmtc_flag",
         "HOUSE_PRICE_INDEX" = "housing_price_index20_log") 


nrow(nmtc_did20_div_hpi)
## [1] 1026
nmtc_diff_in_diff_div_hpi <- bind_rows(nmtc_did10_div_hpi, nmtc_did20_div_hpi)

nmtc_diff_in_diff_div_hpi <- nmtc_diff_in_diff_div_hpi %>% arrange(post, treat, GEOID_2010_trt)

nrow(nmtc_diff_in_diff_div_hpi)
## [1] 2052

NMTC Divisional Model

# SVI & Economic Models

m1_nmtc_div <- lm( SVI_FLAG_COUNT_SES ~ treat + post + treat*post + cbsa, data=nmtc_diff_in_diff_div_svi )

m2_nmtc_div <- lm( SVI_FLAG_COUNT_HHCHAR ~ treat + post + treat*post + cbsa, data=nmtc_diff_in_diff_div_svi )

m3_nmtc_div <- lm( SVI_FLAG_COUNT_REM ~ treat + post + treat*post + cbsa, data=nmtc_diff_in_diff_div_svi )

m4_nmtc_div <- lm( SVI_FLAG_COUNT_HOUSETRANSPT ~ treat + post + treat*post + cbsa, data=nmtc_diff_in_diff_div_svi )

m5_nmtc_div <- lm( SVI_FLAG_COUNT_OVERALL  ~ treat + post + treat*post + cbsa, data=nmtc_diff_in_diff_div_svi)

m6_nmtc_div <- lm( MEDIAN_INCOME ~ treat + post + treat*post + cbsa, data=nmtc_diff_in_diff_div_inc )

m7_nmtc_div <- lm( MEDIAN_HOME_VALUE ~ treat + post + treat*post + cbsa, data=nmtc_diff_in_diff_div_mhv )

m8_nmtc_div <- lm( HOUSE_PRICE_INDEX ~ treat + post + treat*post + cbsa, data=nmtc_diff_in_diff_div_hpi )

# Add all models to a list
models <- list(
  
  "SES" = m1_nmtc_div,
  "HHChar"  = m2_nmtc_div,
  "REM" = m3_nmtc_div,
  "HOUSETRANSPT" = m4_nmtc_div,
  "OVERALL" = m5_nmtc_div,
  "Median Income (USD, logged)" = m6_nmtc_div,
  "Median Home Value (USD, logged)" = m7_nmtc_div,
  "House Price Index (logged)" = m8_nmtc_div
)


# Display model results
modelsummary(models,  fmt = 2, stars = c('*' = .05, '**' = .01, '***' = .001), coef_omit = "cbsa", gof_omit = "IC|Log",
             notes = list('All models include metro-level fixed effects by core-based statistical area (cbsa).'),
             title = paste0("Differences-in-Differences Linear Regression Analysis of NMTC in ", census_division)) %>%
  group_tt(j = list("Social Vulnerability" = 2:6, "Economic Outcomes" = 7:9))
tinytable_27eevuu92ofnoif5b40w
Social Vulnerability Economic Outcomes
Differences-in-Differences Linear Regression Analysis of NMTC in Middle Atlantic Division
SES HHChar REM HOUSETRANSPT OVERALL Median Income (USD, logged) Median Home Value (USD, logged) House Price Index (logged)
* p < 0.05, ** p < 0.01, *** p < 0.001
All models include metro-level fixed effects by core-based statistical area (cbsa).
(Intercept) 1.59*** 1.62*** 0.08* 1.16*** 4.44*** 10.12*** 11.79*** 4.90***
(0.11) (0.08) (0.03) (0.07) (0.21) (0.02) (0.03) (0.04)
treat 0.94*** 0.45*** 0.21*** 0.59*** 2.18*** -0.19*** -0.14*** 0.03
(0.11) (0.08) (0.03) (0.08) (0.22) (0.03) (0.04) (0.07)
post -0.04 -0.04 0.00 0.02 -0.06 0.03*** -0.07*** 0.24***
(0.03) (0.03) (0.01) (0.02) (0.07) (0.01) (0.01) (0.01)
treat × post -0.42** -0.06 -0.05 -0.03 -0.56 0.06 0.11* 0.05
(0.16) (0.12) (0.05) (0.11) (0.31) (0.04) (0.05) (0.09)
Num.Obs. 7238 7238 7238 7238 7238 7236 6788 2020
R2 0.184 0.060 0.342 0.313 0.269 0.088 0.729 0.317
R2 Adj. 0.178 0.053 0.337 0.308 0.263 0.081 0.727 0.302
RMSE 1.40 1.07 0.41 0.98 2.80 0.33 0.46 0.32

Across the SVI flag models for the Middle Atlantic Division, the category that experienced statistically significant changes based on NMTC program enrollment on a divisional basis is Socioeconomic Status.

The Socioeconomic Status category consists of measures of poverty, unemployment, housing burdens, educational levels, and lack of health insurance. Thus, the NMTC’s goal of effecting changes in SES vulnerability appears to be working in the Middle Atlantic Division.

Looking at the SES model:

  • The average SES Flag Count across census tracts eligible for the NMTC program was 1.59 (intercept) flags in 2010. In 2020 this decreased to 1.55 (intercept + post) flags.

  • For tracts that received tax credits from the NMTC program, the average SES flag count was 2.53 (intercept + treat) flags in 2010. In 2020, this decreased to 2.07 (intercept + treat + post + treat*post) flags.

  • Although 2.07 flags in 2020 for tracts in the NMTC program is greater than the average of 1.55 flags in non-treated tracts, the decrease in flag count was greater for tracts enrolled in the NMTC program as indicated by the treat*post coefficient. The counterfactual for NMTC-treated tracts was 2.49 flags (intercept + treat + post).

Across the indicators for changes in Economic Conditions, Median Home Value was statistically significantly greater in tracts that received NMTC dollars versus those that did not:

  • Specifically looking at the logged treat x post coefficient, there was an increase of 11% (.11*100) for each 1-unit increase.

Visualize SES

status <- c("NMTC Non-Participant", 
             "NMTC Participant Counterfactual", 
             "NMTC Participant", 
             "NMTC Non-Participant", 
             "NMTC Participant Counterfactual", 
             "NMTC Participant")
year <- c(2010, 
          2010, 
          2010, 
          2020, 
          2020, 
          2020)
outcome <- c(m1_nmtc_div$coefficients[1], 
           m1_nmtc_div$coefficients[1] + m1_nmtc_div$coefficients[2], 
           m1_nmtc_div$coefficients[1] + m1_nmtc_div$coefficients[2],
           m1_nmtc_div$coefficients[1] + m1_nmtc_div$coefficients[3], 
           m1_nmtc_div$coefficients[1] + m1_nmtc_div$coefficients[2] + m1_nmtc_div$coefficients[3],
           m1_nmtc_div$coefficients[1] + m1_nmtc_div$coefficients[2] + m1_nmtc_div$coefficients[3] + m1_nmtc_div$coefficients[length(m1_nmtc_div$coefficients)])

svidiv_viz_ses_nmtc <- data.frame(status, year, outcome)
svidiv_viz_ses_nmtc$outcome_label <- round(svidiv_viz_ses_nmtc$outcome, 2)
svidiv_viz_ses_nmtc
##                            status year  outcome outcome_label
## 1            NMTC Non-Participant 2010 1.585556          1.59
## 2 NMTC Participant Counterfactual 2010 2.523727          2.52
## 3                NMTC Participant 2010 2.523727          2.52
## 4            NMTC Non-Participant 2020 1.542052          1.54
## 5 NMTC Participant Counterfactual 2020 2.480224          2.48
## 6                NMTC Participant 2020 2.055891          2.06
slopegraph_plot(svidiv_viz_ses_nmtc, "NMTC Participant", "NMTC Non-Participant","Impact of NMTC Program on SVI SES Flag Count", paste0(census_division, " | 2010 - 2020"))

The slopegraph for SES SVI flags for the NMTC program indicates that in the Middle Atlantic Division our NMTC Participant Tracts had a notable decrease in socioeconomic social vulnerability flags in 2020 from the expected count of 2.48 for the counterfactual to 2.06 for the actual outcome.

Visualize Median Home Value

status <- c("NMTC Non-Participant", 
             "NMTC Participant Counterfactual", 
             "NMTC Participant", 
             "NMTC Non-Participant", 
             "NMTC Participant Counterfactual", 
             "NMTC Participant")
year <- c(2010, 
          2010, 
          2010, 
          2020, 
          2020, 
          2020)
outcome <- c(exp(m7_nmtc_div$coefficients[1]), 
           exp(m7_nmtc_div$coefficients[1])*exp(m7_nmtc_div$coefficients[2]), 
           exp(m7_nmtc_div$coefficients[1])*exp(m7_nmtc_div$coefficients[2]),
           exp(m7_nmtc_div$coefficients[1])*exp(m7_nmtc_div$coefficients[3]), 
           exp(m7_nmtc_div$coefficients[1])*exp(m7_nmtc_div$coefficients[2])*exp(m7_nmtc_div$coefficients[3]),
           exp(m7_nmtc_div$coefficients[1])*exp(m7_nmtc_div$coefficients[2])*exp(m7_nmtc_div$coefficients[3])*exp(m7_nmtc_div$coefficients[length(m7_nmtc_div$coefficients)])
)

svidiv_viz_medhmv_nmtc <- data.frame(status, year, outcome)

### Note that instead of rounding like we did for SVI variables, we will be formatting our outcome as US dollars
svidiv_viz_medhmv_nmtc$outcome_label <- scales::dollar_format()(svidiv_viz_medhmv_nmtc$outcome)

svidiv_viz_medhmv_nmtc
##                            status year  outcome outcome_label
## 1            NMTC Non-Participant 2010 131767.2      $131,767
## 2 NMTC Participant Counterfactual 2010 114941.7      $114,942
## 3                NMTC Participant 2010 114941.7      $114,942
## 4            NMTC Non-Participant 2020 123150.8      $123,151
## 5 NMTC Participant Counterfactual 2020 107425.6      $107,426
## 6                NMTC Participant 2020 120052.5      $120,053
slopegraph_plot(svidiv_viz_medhmv_nmtc, "NMTC Participant", "NMTC Non-Participant", "Impact of NMTC Program on Average Median Home Value", paste0(census_division, " | 2010 - 2020"))

When we control for metro-level effects, our average Median Home Value for tracts that did not receive NMTC dollars was $131,767.20 in 2010 when adjusted for inflation. This decreased to $123,150.8 in 2020, a -6.54% decrease in home values according to US Census data.

When we control for metro-level effects, our NMTC treated tracts had an average Median Home Value of $114,941.70 in 2010. The average Median Income in these tracts increased to $120,052.50 in 2020. This is an ~11% increase over what we would have expected according to general trends.

As a counterfactual, we can see that we would have expected the average Median Home Value of $107,425.60 in 2020 if it had decreased by -6.5%.

The slopegraph for Average Home Value for the NMTC program indicates that in the Middle Atlantic Division our NMTC Participant Tracts had a notable increase in 2020 from the expected home value of $107,426 for the counterfactual to $120,053 for the actual outcome. This increase is also in contrast to the general trend of decreasing average median home values within NMTC-eligible tracts in the division from 2010 to 2020.

LIHTC Evaluation

Divisional SVI

# Create 2010 df, create post variable and set to 0, create year variable and set to 2010
lihtc_did10_div_svi <- svi_divisional_lihtc_df %>% 
  select(GEOID_2010_trt, cbsa, F_THEME1_10, F_THEME2_10, F_THEME3_10, F_THEME4_10, F_TOTAL_10, lihtc_flag) %>% 
  mutate(post = 0,
         year = 2010) %>%
  rename("treat" = "lihtc_flag",
         "SVI_FLAG_COUNT_SES" = "F_THEME1_10",
         "SVI_FLAG_COUNT_HHCHAR" = "F_THEME2_10",
         "SVI_FLAG_COUNT_REM" = "F_THEME3_10",
         "SVI_FLAG_COUNT_HOUSETRANSPT" = "F_THEME4_10",
         "SVI_FLAG_COUNT_OVERALL" = "F_TOTAL_10") 

nrow(lihtc_did10_div_svi)
## [1] 658
# Create 2020 df, create post variable and set to 1, create year variable and set to 2020
lihtc_did20_div_svi <- svi_divisional_lihtc_df %>% 
  select(GEOID_2010_trt, cbsa, F_THEME1_20, F_THEME2_20, F_THEME3_20, F_THEME4_20, F_TOTAL_20, lihtc_flag) %>% 
  mutate(post = 1,
         year = 2020) %>%
  rename("treat" = "lihtc_flag",
         "SVI_FLAG_COUNT_SES" = "F_THEME1_20",
         "SVI_FLAG_COUNT_HHCHAR" = "F_THEME2_20",
         "SVI_FLAG_COUNT_REM" = "F_THEME3_20",
         "SVI_FLAG_COUNT_HOUSETRANSPT" = "F_THEME4_20",
         "SVI_FLAG_COUNT_OVERALL" = "F_TOTAL_20"
  )


nrow(lihtc_did20_div_svi)
## [1] 658
lihtc_diff_in_diff_div_svi <- bind_rows(lihtc_did10_div_svi, lihtc_did20_div_svi)

lihtc_diff_in_diff_div_svi <- lihtc_diff_in_diff_div_svi %>% arrange(post, treat, GEOID_2010_trt)

nrow(lihtc_diff_in_diff_div_svi)
## [1] 1316

Divisional Median Income

# Create 2010 df, create post variable and set to 0, create year variable and set to 2010, remove any tracts that don't have data for 2010 and 2019
lihtc_did10_div_inc <- svi_divisional_lihtc_df %>% 
  filter(!is.na(Median_Income_10adj_log)) %>% filter(!is.na(Median_Income_19_log)) %>%
  select(GEOID_2010_trt, cbsa, Median_Income_10adj_log, lihtc_flag) %>% 
  mutate(post = 0,
         year = 2010) %>%
  rename("treat" = "lihtc_flag",
         "MEDIAN_INCOME" = "Median_Income_10adj_log") 


nrow(lihtc_did10_div_inc)
## [1] 657
# Create 2019 df, create post variable and set to 1, create year variable and set to 2019, remove any tracts that don't have data for 2010 and 2019
lihtc_did19_div_inc <- svi_divisional_lihtc_df %>% 
  filter(!is.na(Median_Income_10adj_log)) %>% filter(!is.na(Median_Income_19_log)) %>%
  select(GEOID_2010_trt, cbsa, Median_Income_19_log, lihtc_flag) %>% 
  mutate(post = 1,
         year = 2019) %>%
  rename("treat" = "lihtc_flag",
         "MEDIAN_INCOME" = "Median_Income_19_log") 


nrow(lihtc_did19_div_inc)
## [1] 657
lihtc_diff_in_diff_div_inc <- bind_rows(lihtc_did10_div_inc, lihtc_did19_div_inc)

lihtc_diff_in_diff_div_inc <- lihtc_diff_in_diff_div_inc %>% arrange(post, treat, GEOID_2010_trt)

nrow(lihtc_diff_in_diff_div_inc)
## [1] 1314

Divisional Median Home Value

lihtc_did10_div_mhv <- svi_divisional_lihtc_df %>% 
  filter(!is.na(Median_Home_Value_10adj_log)) %>% filter(!is.na(Median_Home_Value_19_log)) %>%
  select(GEOID_2010_trt, cbsa, Median_Home_Value_10adj_log, lihtc_flag) %>% 
  mutate(post = 0,
         year = 2010) %>%
  rename("treat" = "lihtc_flag",
         "MEDIAN_HOME_VALUE" = "Median_Home_Value_10adj_log") 


nrow(lihtc_did10_div_mhv)
## [1] 577
lihtc_did19_div_mhv <- svi_divisional_lihtc_df %>% 
  filter(!is.na(Median_Home_Value_10adj_log)) %>% filter(!is.na(Median_Home_Value_19_log)) %>%
  select(GEOID_2010_trt, cbsa, Median_Home_Value_19_log, lihtc_flag) %>% 
  mutate(post = 1,
         year = 2019) %>%
  rename("treat" = "lihtc_flag",
         "MEDIAN_HOME_VALUE" = "Median_Home_Value_19_log") 


nrow(lihtc_did19_div_mhv)
## [1] 577
lihtc_diff_in_diff_div_mhv <- bind_rows(lihtc_did10_div_mhv, lihtc_did19_div_mhv)

lihtc_diff_in_diff_div_mhv <- lihtc_diff_in_diff_div_mhv %>% arrange(post, treat, GEOID_2010_trt)

nrow(lihtc_diff_in_diff_div_mhv)
## [1] 1154

Divisional House Price Index

lihtc_did10_div_hpi <- svi_divisional_lihtc_df %>% 
  filter(!is.na(housing_price_index10_log)) %>% filter(!is.na(housing_price_index20_log)) %>%
  select(GEOID_2010_trt, cbsa, housing_price_index10_log, lihtc_flag) %>% 
  mutate(post = 0,
         year = 2010) %>%
  rename("treat" = "lihtc_flag",
         "HOUSE_PRICE_INDEX" = "housing_price_index10_log") 


nrow(lihtc_did10_div_hpi)
## [1] 77
lihtc_did20_div_hpi <- svi_divisional_lihtc_df %>% 
  filter(!is.na(housing_price_index10_log)) %>% filter(!is.na(housing_price_index20_log)) %>%
  select(GEOID_2010_trt, cbsa, housing_price_index20_log, lihtc_flag) %>% 
  mutate(post = 1,
         year = 2020) %>%
  rename("treat" = "lihtc_flag",
         "HOUSE_PRICE_INDEX" = "housing_price_index20_log") 


nrow(lihtc_did20_div_hpi)
## [1] 77
lihtc_diff_in_diff_div_hpi <- bind_rows(lihtc_did10_div_hpi, lihtc_did20_div_hpi)

lihtc_diff_in_diff_div_hpi <- lihtc_diff_in_diff_div_hpi %>% arrange(post, treat, GEOID_2010_trt)

nrow(lihtc_diff_in_diff_div_hpi)
## [1] 154

LIHTC Divisional Model

# SVI & Economic Models

m1_lihtc_div <- lm( SVI_FLAG_COUNT_SES ~ treat + post + treat*post + cbsa, data=lihtc_diff_in_diff_div_svi )

m2_lihtc_div <- lm( SVI_FLAG_COUNT_HHCHAR ~ treat + post + treat*post + cbsa, data=lihtc_diff_in_diff_div_svi )

m3_lihtc_div <- lm( SVI_FLAG_COUNT_REM ~ treat + post + treat*post + cbsa, data=lihtc_diff_in_diff_div_svi )

m4_lihtc_div <- lm( SVI_FLAG_COUNT_HOUSETRANSPT ~ treat + post + treat*post + cbsa, data=lihtc_diff_in_diff_div_svi )

m5_lihtc_div <- lm( SVI_FLAG_COUNT_OVERALL  ~ treat + post + treat*post + cbsa, data=lihtc_diff_in_diff_div_svi)

m6_lihtc_div <- lm( MEDIAN_INCOME ~ treat + post + treat*post + cbsa, data=lihtc_diff_in_diff_div_inc )

m7_lihtc_div <- lm( MEDIAN_HOME_VALUE ~ treat + post + treat*post + cbsa, data=lihtc_diff_in_diff_div_mhv )

m8_lihtc_div <- lm( HOUSE_PRICE_INDEX ~ treat + post + treat*post + cbsa, data=lihtc_diff_in_diff_div_hpi )

# Add all models to a list
models <- list(
  
  "SES" = m1_lihtc_div,
  "HHChar"  = m2_lihtc_div,
  "REM" = m3_lihtc_div,
  "HOUSETRANSPT" = m4_lihtc_div,
  "OVERALL" = m5_lihtc_div,
  "Median Income (USD, logged)" = m6_lihtc_div,
  "Median Home Value (USD, logged)" = m7_lihtc_div,
  "House Price Index (logged)" = m8_lihtc_div
)


# Display model results
modelsummary(models,  fmt = 2, stars = c('*' = .05, '**' = .01, '***' = .001), coef_omit = "cbsa", gof_omit = "IC|Log",
             notes = list('All models include metro-level fixed effects by core-based statistical area (cbsa).'),
             title = paste0("Differences-in-Differences Linear Regression Analysis of LIHTC in ", census_division)) %>%
  group_tt(j = list("Social Vulnerability" = 2:6, "Economic Outcomes" = 7:9))
tinytable_doqtccus39v5l2a0086e
Social Vulnerability Economic Outcomes
Differences-in-Differences Linear Regression Analysis of LIHTC in Middle Atlantic Division
SES HHChar REM HOUSETRANSPT OVERALL Median Income (USD, logged) Median Home Value (USD, logged) House Price Index (logged)
* p < 0.05, ** p < 0.01, *** p < 0.001
All models include metro-level fixed effects by core-based statistical area (cbsa).
(Intercept) 2.94*** 1.82*** 0.24*** 1.33*** 6.33*** 9.86*** 11.68*** 4.86***
(0.19) (0.16) (0.07) (0.16) (0.39) (0.06) (0.09) (0.28)
treat 0.23 0.30* 0.16** 0.34** 1.03*** -0.03 -0.13 0.11
(0.14) (0.12) (0.05) (0.12) (0.28) (0.04) (0.07) (0.14)
post -0.09 -0.09 -0.02 0.05 -0.15 0.04 -0.07* 0.27***
(0.07) (0.06) (0.02) (0.06) (0.14) (0.02) (0.03) (0.07)
treat × post 0.10 0.20 -0.04 -0.05 0.21 0.00 0.12 0.00
(0.19) (0.17) (0.07) (0.16) (0.39) (0.06) (0.10) (0.19)
Num.Obs. 1314 1314 1314 1314 1314 1312 1152 154
R2 0.145 0.137 0.271 0.220 0.236 0.209 0.698 0.255
R2 Adj. 0.123 0.114 0.251 0.199 0.216 0.188 0.689 0.162
RMSE 1.15 1.01 0.41 0.98 2.37 0.35 0.53 0.37

The diff-in-diff regression models for the LIHTC program in the Middle Atlantic Division do not indicate any statistically significant changes in social vulnerability or economic outcomes. Therefore we cannot conclude that the program had a measurable impact on our SVI and economic outcomes.

However,the Middle Atlantic Division tracts that received LIHTC dollars were statistically more vulnerable based on Household Characteristics, Racial and Ethnic diversity, Housing and Transportation, and Overall Social Vulnerability.

Since the LIHTC program focuses on increasing availability of housing for low income individuals in a variety of communities, these results may suggest it is effective at targeting more vulnerable areas and accomplishing this goal. However, further research is needed.