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A B S T R A C T

Location indices are key in explaining variation in house prices. However, the definition of comprehensive
indices capturing all locational features, along with their efficient and timely calculation, is usually one of the
most complex dimensions of house price modeling. Existing difficulties result in partial location specifications,
mostly due to three hurdles: (1) there is not a consensus on the best method to construct these indices,
(2) what features (variables) to include: labor, demographic, commuting, etc., and (3) its creation requires
granular and updated datasets. We introduce a methodology based on computer algorithms to create car and
walk accessibility indices that address the previous concerns and capture location interactions among a wide
range of variables. The selection of variables is based on an automated search of the best performing utility
bearing gravitational accessibility indices for price prediction. Once these optimal indices are obtained, the
method applies principal components analysis to secure their orthogonality. Using a unique dataset from a
leading real estate portal in Europe, we illustrate and test for the city of Madrid their applicability in several
house asking price models that are estimated using regression analysis and random forests (as a representative
family of machine learning techniques). The experimental analysis reveals that using the optimal indices
results in significant improvements in accuracy, for both regression-based models (13%) and random forests
(21.6%), while achieving a substantial reduction in spatial autocorrelation (around 35%). The generated indices
are clearly interpretable, which makes them a valuable tool for urban analyses (planning, transportation,
sustainability, etc.). Finally, the methodology can be extended to other types of real state (commercial,
industrial, etc.) and location (country, region, etc.).
1. Introduction

It is common knowledge that house location is key when individuals
make the decision to buy a home, thereby determining its value. This
intuition is backed by extensive research showing that households move
mainly due to changes in job location (saving in commuting times)
or changes in their family situation and income (requiring different
housing characteristics)–for early references see Hanushek and Quigley
(1979), Friedman and Weinberg (1981) and Malpezzi (2003). Hedonic
price models (HPMs) allow quantifying the effect of location on house
prices. In these models location is represented by a set of variables
conforming the notion of accessibility to transport infrastructure, local
public services, amenities, etc. Under traditional regression analysis,
the parameters estimated through HPMs allow identifying the marginal
contribution to price that each one the considered attributes make.
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However, there is general consensus that the misspecification of the ac-
cessibility variables included in (or excluded from) the model leads to a
series of econometric problems resulting in biased estimations. Among
the foremost problems we highlight spatial heterogeneity and spatial
autocorrelation (Anselin & Griffith, 1988), multicollinearity (Orford,
2017), and heteroscedasticity (Fletcher, Gallimore, & Mangan, 2000).

All these problems, particularly spatial heterogeneity and spatial
autocorrelation, derive from a poor specification of location attributes
in the HPM. In a systematic review of how location is incorporated
in hedonic models, Heyman, Law, and Pont (2018) stress that the
majority of models rely on poorly elaborated location variables or
arbitrarily aggregated area features. In our view this is the result of
three factors: data unavailability, inappropriate spatial partitioning and
computational complexity of generation. The bottom line is that these
variables are often incomplete, outdated or arbitrarily specified.
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When addressing the question of how to define proper accessibility
indices, the first challenge to address is how to specify the location
variables, bearing in mind that urban layouts are diverse and the
influence of factors vastly vary from one area to another. The second
question is the availability of information: data cannot be timely col-
lected and may be aggregated with arbitrary criteria for the domain
of the problem. For instance, census tracts are designed for describing
population distribution and characteristics, but not for capturing fea-
tures of their housing submarkets. The third concern is that simplistic
definitions of accessibility indices to location attributes do not reflect
the marginal utility of location, as they are normally based on ‘as
the crow-flies’ Euclidean distances or relatively better travel times.
However, satisfactory indices reflecting the utility of the location based
on gravitational specifications are rarely used in the industry mainly
due to the computational cost of calculating them.

In this study we propose and evaluate a methodology for construct-
ing a set of gravity-based accessibility indices for HPMs that overcome
existing limitations. These indices address the main issues met when
defining this kind of variables; namely, making the creation process sys-
tematic, being consistent with a utility bearing framework, and generating
spatially robust variables. Each location accessibility index summarizes
numerically the opportunities that a real state property has nearby,
such as access to workplaces, transportation, leisure, schools, etc. To
improve their statistical properties we generate a set of orthogonal
accessibility indices. The method relies on the principal components
analyses to produce these indices, ensuring that they control for spatial
dependence, as they are later used as explanatory variables in the
HPM. We illustrate their applicability for predicting house prices in
Madrid (Spain), and check their performance in terms of accuracy and
predictive power using a naïve benchmark model that is compared to
two increasingly complex models in terms of the inclusion of loca-
tional attributes (either through dummies as in standard specifications,
or through our newly proposed accessibility indices). Using common
metrics, e.g., mean average percentage error, our results confirm the
superiority of the automatically generated accessibility indices when
predicting housing prices. We perform several robustness checks by
using four different estimation methods, two related to regression
analysis and two based on trees and random forests (as representative
families of machine learning algorithms).

Machine learning techniques are becoming increasingly common in
fields where traditional techniques such as statistics were exclusively
applied. One main reason for this shift is that, from a predictive
perspective, deep learning offers excellent levels of accuracy for com-
plex matters (Han et al., 2022; Huang, Zhang, Wang, Wu, & Song,
2022; Huang, Zhang, Wu, Min, & Song, 2022; Kumar & Suresh, 2023;
Tang, Zhang, Min, & He, 2022). These methods are especially useful
to study real estate markets when applied to large volumes of data
from classified advertisement portals. For example, Bricongne, Meu-
nier, and Pouget (2023) track daily prices on data from five portals
in the United Kingdom using machine learning techniques. In Asia,
Wang, Li, and Wu (2020) develops a housing price index for 274
Chinese cities based on data from real estate websites. Therefore,
although regression analysis represents the most common estimation
method, machine learning techniques have been gaining ground in the
prediction of housing prices since the nineties. First approaches were
performed with neural networks (Kauko, Hooimeijer, & Hakfoort, 2002;
Liu, Zhang, & Wu, 2006; McCluskey & Anand, 1999; Pace, 1995; Selim,
2009). However, there is a growing number of studies based on tree-
based algorithms, especially those based on ensemble models, such as
gradient boosting or random forests. Tree models have demonstrated
their suitability to the problem (Antipov & Pokryshevskaya, 2012), with
a good performance compared to other techniques (Steurer, Hill, &
Pfeifer, 2021; Valier, 2020) and making it possible to perform accurate
massive appraisals with a large degree of explainability. Specifically,
random forests (hereafter RF) have been widely used for modeling
2

house prices, either on academia or industry. Among them, Antipov
and Pokryshevskaya (2012) benchmark a RF model against ten other
machine learning algorithms, over properties on sale in Saint Peters-
burg (Russia). Baldominos et al. (2018), Alfaro-Navarro et al. (2020)
and Rico-Juan and Taltavull (2021) use RF models to build house
price models for Spanish properties. As aforementioned, we contribute
also to this literature by comparing the performance of regression
methods like the Lasso and Elastic-Net Regularized Generalized Lin-
ear Models, LERG, against recursive partitioning trees and RF. In the
comparison we include the optimal accessibility indices obtained by
applying two algorithms aimed at maximizing their explanatory power,
while removing collinearity among them. Our results indicate that the
regression models equipped with these optimal indices perform as well
as the machine learning methods, suggesting that the new methods
are capable of generating indices that properly capture the influence
of locational attributes on price. We confirm this by establishing the
spatial robustness of the results, which is also on par for both models.
This is in sharp contrast to previous findings where machine learning
clearly outperforms classical regression, but where the use of optimal
accessibility indicators is not incorporated to the modeling process.
Hong, Choi, and Kim (2020) shows a fourfold absolute error reduction
in automatic valuations in the Gagnam neighborhood in Seoul (South
Korea), while Čeh, Kilibarda, Lisec, and Bajat (2018) and Hjort, Pensar,
Scheel, and Sommervoll (2022) report similar superiority.

The three main methodological contributions of our research are,
firstly, the proposed method’s approach to address ex-ante, and from
a utility perspective, the bias introduced by spatial dependence. This
contrasts with standard spatial analysis approaches whose primary
objective is to deal ex-post with its existence and effect on a studied
phenomenon. As explained by Montero, Fernández-Avilés, and Mateu
(2015): ‘‘...in geostatistics, the most important aspect in the geostatistical
analysis is to quantify the spatial correlation between observations (...) and
use this information to achieve the previous objectives...’’. Thus, improving
existing calculations of accessibility indices, our contribution has the
advantage of being able to better capture the effects of locational
attributes on housing price models by filtering out spatial dependence.
In this regard, our methodology does not resort to ad-hoc spatial statis-
tical measures but addresses its root causes (Pot, van Wee, & Tillema,
2021), introducing a valuable econometric analysis tool. Secondly,
the methodology is implemented through efficient algorithms: as the
orthogonal (or boosted) accessibility indices are precalculated over a
fixed grid, our method puts forward an inexpensive computational
process to bring detailed location features in house valuation problems,
making it suitable for highly demanding data setups on any database
engine. Thirdly, we show how embedding our newly proposed accessi-
bility indices into a standard hedonic price model improves the results
in terms of accuracy and spatial robustness, regardless the estimation
approach, either using regression methods or more recently available
machine learning techniques.

The article is structured as follows, after this introduction we review
the literature on the use of location attributes in hedonic housing price
models; in particular the use of accessibility indices. The third and
fourth sections describe the methodology and data sources for calculat-
ing the newly proposed optimal accessibility indices. In the fifth section
we estimate a series of hedonic price models through econometric
methods and machine learning techniques, and compare the results
obtained with both approaches. Here we show that the inclusion of
the new accessibility indices improves the performance of regression
methods when compared to trees and RF. In the sixth section we further
reinforce the advantages of the proposed methodology by looking into
how capable they are at minimizing spatial autocorrelation. We draw
the main conclusions and identify further lines of research in the last

section.
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2. Literature review on locational attributes for hedonic housing
price models

In this section, we carry out a literature review on the topic of
modeling the effect of locational attributes on hedonic price mod-
eling through accessibility indices. We survey classic references and
newly proposed approaches, both from the conceptual end empiri-
cal perspectives. In particular, the emergence of automated processes
and machine leaning techniques in the calculation of the accessibility
indices entering the estimation of hedonic prices.

Although accessibility has been a central topic on physical urban
planning from the second half of 20th century, first uses of this term
date back to the 1920s. However, it was Hansen (1959) who pro-
posed a preliminary methodology for the use of accessibility for urban
planning. Since then a location’s accessibility refers to the intensity of
potential interactions with a series of opportunities or attributes such
as employment, public services and amenities. Related studies in other
fields as population geography (Stewart, 1947) first defined the grav-
itational potential of a location by weighting a sum of forces related
to the rules of distribution and population equilibrium. Accessibility
indices associate a given opportunity at a specific place with the
cost of realizing it (Batty, 2009). This cost, also called impedance, is
normally measured as distance or, at best, travel time. Accessibility
indices are usually presented in an aggregate or composite form that
summarizes how easy or difficult it is to realize a given level of
utility, represented by a vector of opportunities at the place of inter-
est. However, due to data constraints and computational limitations,
the definition of these indices is normally done in a simplistic way
without resorting to gravitational models. Our methodology develops
these methods by proposing the definition of optimal accessibility
indices based on a utility-bearing gravitational approach that is com-
putationally implemented in an efficient manner through automated
algorithms.

Even if some authors argue that the adoption of accessibility in
urban planning has not evolved much in the past decades, e.g. Handy
(2020), some promising studies reintroduce the accessibility concept
as the framework of thinking in urban analysis. In this regard, the
increasing abundance of open sources and new computational ca-
pabilities have brought up new generic spatial features (Vecchio &
Martens, 2021). Examples of the latter are, for example, the set of
global generic indicators proposed by Boeing et al. (2022), or the urban
spatial features called ‘Spatial Signatures’ put forward by Arribas-Bel
and Fleischmann (2022). All these sources have been also released
publicly for further analyses (Samardzhiev, Fleischmann, Arribas-Bel,
Calafiore, & Rowe, 2022).

A hedonic price model acknowledges that a heterogeneous good can
be described by a series of attributes. Therefore a good is essentially a
set of characteristics whose value can be ascertained by the aggregated
performance of utility-bearing characteristics (Rosen, 1974). In the case
of real state property such as housing, location results in a series of ad-
vantages or disadvantages generating utility or disutility, which affects
properties’ sale price. Consequently, when specifying hedonic price
models for housing, it is imperative to include accessibility indices. The
first approaches to introduce locational attributes as part of hedonic
models date back to Kain and Quigley (1970), who included a set of
neighborhood characteristics including distance to the central business
district (capturing the land-rent gradient by which the farther are
locations from the CBD, the lower are their prices due to higher trans-
portation costs), along with the structural characteristics of the housing
unit. Later on these models were enriched with other features (see
Bowen, Mikelbank, & Prestegaard, 2001) by including market variables
related to supply and demand characteristics (number of properties on
sale, intensity of demand, etc.). There is consensus in the literature that
simple popular methods for encoding locational attributes like using
dummies have the implication of limited explanatory power compared
3

with relative location variables, as shown by Heyman and Sommervoll
(2019) when explaining housing prices in Oslo, Norway. Our study
further investigates this question by comparing the results obtained for
several models that differ in the treatment of locational attributes: ex-
cluding them, using simple dummies, or including optimal accessibility
indices. Our contribution helps overcoming the imprecise specification
of location attributes in standard hedonic modeling by introducing
interpretable, highly-granular, easy-to-calculate indicators capable of
producing better-fitted regressions (Diewert & Shimizu, 2021).

Lately a great number of studies have found empirical evidence
of the relation of locational attributes and house prices from diverse
standpoints. To name a few, Cao (2015) showed that closeness to
industrial, commercial, multifamily and public land uses tend to in-
crease surrounding home values. Hence, this author concludes that a
balanced (optimal) mix of land use activities should be sought when
locating economic activities into neighborhoods. Also, accessibility to
public services and transportation have received special attention. Ac-
cess and quality to public services have been found to be significant
determinants of housing value (see Lan, Wu, Zhou, & Da, 2018). This
research finds relevant the access to municipal services, average aca-
demic results and student–teacher ratios. Bowes and Ihlanfeldt (2001),
Bartholomew and Ewing (2011), Agostini and Palmucci (2017), and
Choi, Park, and Uribe (2022) study the effect of access to public
transport, including both direct and indirect effects of transit stations,
on the attractiveness of nearby neighborhoods. They found that stations
located away from downtown have positive impacts, creating ‘islands’
of higher property values. In the same vein, Zhou, Chen, Hong, and
Zhang (2021) analyze the effect on house prices of introducing a new
subway stations in Shanghai. By reducing travel time, easier commutes
to the central business district result in an average house price increase
of 3.75%, with the most distant residential zone enjoying the largest
price growth. Recently Li (2020), using several data sets of Beijing’s
congestion patterns and housing prices, find that consumers are willing
to pay significantly more for access to rail transit in more congested
areas. He corroborates the prediction that the expansion of the metro
network mitigates the costs of road congestion, creating both private
and social benefits. Our contribution, in this regard, tackles the diffi-
culty of selecting the best definition for public transport attributes to
include in price models, by using the proposed automated framework.

Besides the different attributes surrounding the property determin-
ing its value (in terms of utility for the buyer), it has been also shown
that the street layout may have a relevant effect on house prices. This is
particularly relevant for differentiating accessibility in terms of driving
times or walking times. Asabere and Harvey (1985) provided empirical
evidence from Halifax-Dartmouth, Canada, concluding that an open
street layout, such as a residential zoning with large lots and high road
density, leads to higher prices. Studying residential property valuation
in Minnesota, Iacono and Levinson (2011) give evidence about the
positive effect that a lower distance to major highway links (access
points) has on house prices. Datagov (2019) shows that pedestrian
walkability is related to greater housing prices, by capturing how
the density or concentration of attributes is higher when they are
within walking distance, calculated as the percentage of households
less than a quarter of an hour walk to commercial use or a public
transport stop. The contribution of ‘walkability’ to house prices might
be different depending the specific geography of the urban areas, which
is taken into consideration through Geographical Information System
(GIS) techniques—early studies in the US carried out by Yates and
Miller (2011), who rely on a Walk ScoreTM, and Sohn, Moudon, and
Lee (2012), confirmed that a combination of pedestrian infrastructure
and land use mix significantly contributes to increases in rental multi-
family property values. Recently, Choi et al. (2022) reinforce these
results, finding that walkable neighborhood designs, when coupled
with (light) rail accessibility, have significant and positive impact on
values for all residential properties. Few studies make the distinction
between car and pedestrian accessibility, choosing just one of them.

Since considering both types of accessibility is relevant when studying
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house prices in urban areas we also differentiate between the two in
our methodology and empirical application. Also, in contrast to ad-hoc
approaches, our modular algorithm design facilitates the introduction
of future new transport modes or spatial features.

Finally, Heyman et al. (2018) perform a meta-analysis of the liter-
ature, finding that even if a majority of hedonic housing price models
include accessibility variables in their specifications, they do so in a
simplistic way. In particular, the preferred use of simple Euclidean
distance or even travel times, given their calculation ease, over gravity-
based indices, questions the ability of the models to capture the real
effect of location on prices. Also, although Euclidean distance to CBD
is a straightforward method to introduce accessibility, this monocentric
approach seems no longer to be valid for current urban configurations
as we find in the studies by Waddell, Berry, and Hoch (1993) and Xiao
(2017). These authors challenge the validity of monocentric schemes
suggesting the use of polycentric models. In order to address the
question, Small and Song (1994) suggested a number of accessibility,
demographic and urban planning measures to be included in a housing
price model. Later work by Knaap and Song (2003) applied a series of
quantitative measures using GIS to capture the contribution of different
features to price. They defined six characteristics affecting single-family
homes: street design and circulation systems, connectivity, block size
and square mesh configuration. We consider all this received knowl-
edge in our proposal of optimal accessibility indices by considering the
most advance GIS techniques when including travel time as impedance
variable in the gravity-based specifications—both by car and walking.

3. A new methodology to create automated optimal accessibility
indices for hedonic price modeling

In this section, we present the methodology, based on a utility-
bearing gravitational approach, to calculate a family of raw accessibil-
ity indices for each locational attribute, which are defined for different
impedance values. How to choose among the different possibilities to
determine the optimal specification of these indices is presented in the
following section. However, since these indices are intended to be used
as explanatory variables in hedonic housing price models, we start pre-
senting their standard specification and how accessibility indices enter
its formulation. Here we also discuss the statistical sources, datasets,
and geographical information systems employed in the calculation of
the accessibility indices.

3.1. Specification of the hedonic housing price model

Our proposed methodology creates a set of accessibility indices
that capture the contribution of location to house prices. In the next
section we present the unique dataset we use to create these indices.
The dataset is compiled in collaboration with Idealista, a leading real
estate portal in Europe. We resort to a standard hedonic housing price
model to illustrate and test the relevance of the new indices, and
decompose the contribution that different attributes make to the price
of real estate property. As we show below the model is estimated using
both econometric and machine learning methods, to check the robust-
ness of our results regarding the relevance of the novel accessibility
indices. The specification of these indices follows the categorizations
proposed by Heyman et al. (2018). Hence, an accessibility index is
defined by a series of opportunities a given location offers and an
impedance (gravitational) function based on the transportation cost
from the opportunities to the location, which is measured in travel
times.

Economic theory provides guidance regarding the right functional
form of the hedonic housing price models (Freeman, 1979; Rosen,
1974). Cassel and Mendelsohn (1985) discuss the pros and cons of
the Box–Cox specification, which generalizes familiar forms like the
semilog, log linear or translog. However, they stress that the large num-
ber of parameters involved in this specification reduces the accuracy
4

of the estimates, it is not suited for negative data, and maybe inap-
propriate for prediction purposes. Since our main goal is to determine
the eventual superiority of our proposed accessibility indices in terms
of accuracy and predictive power over simplistic options, keeping the
model specification as simple as possible serves our purpose. Abiding
by the principle of parsimony in this dimension of the study, we rely
on the standard formulation represented by the time dummy hedonic
model—see, e.g., Eurostat (2012, Ch.5).

This formulation expresses the model as a linear function of the
property attributes, which based on the rich available information
corresponds to four categories of characteristics— Table 1. The hedonic
house price model assumes the price of a property 𝑛 in period 𝑡, 𝑝𝑡𝑛, is
a function of a fixed number of characteristics or features 𝑞 = 1,… , 𝑄,
reachable by car or walking, m={car, walk}, which are measured by a
series of quantities 𝑍𝑡𝑚

𝑛𝑞 = {�̂�𝑡𝑚∗
𝑛𝑘 , 𝑆𝑡

𝑛𝑗 ,𝑀
𝑡
𝑛𝑙 , 𝐷

𝑡
𝑛𝑘} observed at 𝑡 = 1,… , 𝑇

eriods, plus a random error term 𝜖𝑡𝑛. That is,

𝑡
𝑛 = 𝛽0+

∑

𝑘
𝛽𝑘⋅�̂�

𝑡𝑚∗
𝑛𝑘 +

∑

𝑗
𝛽𝑗 ⋅𝑆

𝑡
𝑛𝑗+

∑

𝑙
𝛽𝑙⋅𝑀

𝑡
𝑛𝑙+

∑

𝑡
𝛿⋅𝐷𝑡

𝑛+𝜖
𝑡
𝑛, 𝑚 = {car, walk},

(1)

here: (1) �̂�𝑡𝑚∗
𝑛𝑘 represents our locational accessibility (A) indices in

erms of 𝑘 = 1,… , 𝐾 locational opportunities that are reachable by car
nd walking; (2) 𝑆𝑡

𝑛𝑗 denotes the 𝑗 =, 1..., 𝐽 structural (S) attributes of the
roperty; (3) 𝑀 𝑡

𝑛𝑙 captures the 𝑙 = 1,… , 𝐿 supply and demand features
f the submarket (M) to which the asset belongs; and (4) 𝐷𝑡

𝑛 accounts
or the time dummies (D). We anticipate here that the �̂�𝑡𝑚∗

𝑛𝑘 accessibility
indices entering model (1) are the result of an optimization process
that, departing from a set of raw accessibility indices, 𝐴𝑡𝑚

𝑛𝑘 (i.e., without
the ‘hat’ notation), determines their best definition by maximizing
their correlation with the residuals of a naïve OLS model that omits
accessibility but includes the rest of attributes (𝑆𝑡

𝑛𝑗 ,𝑀
𝑡
𝑛𝑙 , 𝐷

𝑡
𝑛𝑘), and

ubsequently transforms these correlated indices, 𝐴𝑡𝑚∗
𝑛𝑘 (termed ‘optimal’

nd denoted with the superscript ’*’), into orthogonal ones through
rincipal components analysis—ultimately obtaining �̂�𝑡𝑚∗

𝑛𝑘 , which con-
titute what we call boosted accessibility indices. Also, besides the
utomated generation of these orthogonal indices �̂�𝑡𝑚∗

𝑛𝑘 to be included
n (1), a further contribution of this study is the introduction of the
arket variables 𝑀 𝑡

𝑛𝑘. These are rarely available in empirical modeling
ue to the difficulty of obtaining this information, however they are
nstrumental in understanding the behavior of supply and demand
orces for each (sub)market (Piazzesi, Schneider, & Stroebel, 2015). As
hown in the next section, we are capable of identifying and quantifying
any of these characteristics. Finally, the dependent variable 𝑝𝑡𝑛 is
rice per square meter, rather than overall price, as it helps reduce
eteroscedasticity in the model. Under classic error assumptions, in
articular a zero mean and constant variance, the model is estimated
n the pooled data pertaining to all time periods, represented by the
ummies.

.2. Specifying and calculating the raw accessibility indices 𝐴𝑡𝑚
𝑛𝑘

We now focus on the definition of the variables entering the acces-
ibility indices from the input sources that numerically summarize the
pportunity set that a location brings to individuals. As anticipated,
n densely populated areas, it is relevant to consider accessibility by
ar and foot (Wee & Vickerman, 2021). The construction of each pair
f drive and walk indices is based on the same attributes for both
ransport modes and, as shown in the next section, we let the opti-
izing algorithm decide their importance for each mode. In this way
e prevent the introduction of subjective biases that would entail the

hoice of different attributes for each index. Each opportunity entering
he accessibility index is constructed as a gravitational index of the
alues of each variable within a series of isochrones, which are adapted
ccording with the two transport modes, 𝑚 ={car, walk}. For the car
ransport mode we consider the vector of distances 𝑑 , reachable
𝑖(𝑚=𝑐𝑎𝑟)
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Table 1
Hedonic model variable categories.

Category Motivation for inclusion

Locational accessibility : �̂�𝑡𝑚∗
𝑛𝑘 Optimal accessibility indices obtained by applying principal components analysis to a set

of optimized raw accessibility indices. These indices capture the contribution of location
to the price of a property, including accessibility indices based on neighborhood
characteristics and other geographical features

Structural characteristics: 𝑆 𝑡
𝑛𝑗 Structural variables control for the physical features of the property such as square

meters, room number or state of conservation

Market features: 𝑀 𝑡
𝑛𝑙 Incorporates the main supply and demand dynamics of the market where the property is

located

Time dummies: 𝐷𝑡
𝑛 measure adjustments of price over time, seasonality and trend effects
p
m

𝑂

𝑀

a

from every location in the following times: 𝑖(𝑐𝑎𝑟) = {1,… , 𝐼} = {5, 10,
20, 30, 40, 50, and 60 minutes}, whereas for the pedestrian indices we
consider 𝑑𝑖(𝑚=𝑤𝑎𝑙𝑘) with the following times: 𝑖(𝑤𝑎𝑙𝑘) = {1,… , 𝐼} = {5,
10, 20, and 30 minutes}. Driving distances are calculate assuming the
legal driving speed limit, while walking distances assume a speed of 5
km/h.2

When defining the raw accessibility indices 𝐴𝑡𝑚
𝑛𝑘 our conceptual

framework assumes that locations yield utility to home owners through
access to a set of opportunities represented by a set of specific variables
observed in location 𝑛 at time 𝑡. The utility yielded by an opportunity
is decreasing in transportation costs, which we model through an
exponential penalty function which is inversely proportional to the
distances reachable by the alternative travel times. Specifically, for
each variable 𝑘, our raw index of location accessibility, 𝐴𝑡𝑚

𝑛𝑘, aggregates
its values for all 𝐼 isochrones (e.g., number of bus stops within 5, 10, 20
and 30 min walking times), each weighted by its relative travel time,
into a single scalar. This corresponds to the following specification (see,
e.g., Levinson & Krizek, 2005):

𝐴𝑡𝑚
𝑛𝑘 =

𝐼
∑

𝑖(𝑚)=1
𝑂𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦𝑘(𝑋, 𝑌 , 𝑑𝑖(𝑚)) ⋅ 𝑒

−𝛽𝑚⋅𝑑𝑖(𝑚) , 𝑚 = car, walk, (2)

where 𝑂𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦𝑘(𝑋, 𝑌 , 𝑑𝑖(𝑚)) represents a specific opportunity (vari-
ble) located at coordinates 𝑋, 𝑌 and distance 𝑑 within the geograph-

ical limits of the isochrones associated to the location. The distance
measure 𝑑𝑖(𝑚) corresponds to the aforementioned ranges of travel times
(in minutes). The parameter 𝛽𝑚 represents the exponential decay of the
index for the applied impedance (in this case the calculated travel time
distance). The accessibility index (2) is specific for each transportation
mode, either walking or driving. In the empirical section we discuss the
selection of the optimal values of 𝐴𝑡𝑚∗

𝑛𝑘 for a range of 𝛽𝑚 values entering
he optimizing algorithm.

.2.1. Opportunities and specific variables entering the location accessibility
ndices

According to Eq. (2), our gravitational accessibility indices 𝐴𝑡𝑚
𝑛𝑘 are

onstructed by aggregating the number of items for each 𝑘 = 1,… , 𝐾
opportunity observed in a given location 𝑛 at time 𝑡. We present in
Table 2 the 𝐾 =26 variables used in this study to represent these
opportunities. These variables are grouped into five categories: Public
transportation, Private transportation, Economic activity & Basic services,
Social and Recreational. We define 𝑂𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦𝑘(𝑋, 𝑌 , 𝑑𝑖(𝑚)) as generally
as possible, and therefore adopt the classification set out by Hey-
man et al. (2018). This classification includes the most commonly
used variables considered by the industry and academia. Therefore, an

2 The definition of isochrones ranging from 5- to 30-minutes on foot,
r from 5- to 60-minutes driving, are commonly used in the accessibility
iterature. For example, Ewing and Cervero (2010) and Handy and Niemeier
1997) suggest using 10-minute walking thresholds to measure accessibility to
oints of interest under usual urban configurations, while Frank et al. (2010)
ecommend taking 5-minute walk distances to parks and transit stops, and
5

onger boundaries for other destinations.
𝑂𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦𝑘(𝑋, 𝑌 , 𝑑𝑖(𝑚)) index is in essence a measure of a variable con-
tained within an isochrone at time-distance 𝑑𝑖(𝑚), whose measurement is
erformed cumulatively at one of the following levels: as a count of ele-
ents, as a sum of areas, as a sum of lengths or as a density, specified as:

𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦𝑘(𝑋, 𝑌 , 𝑑𝑖(𝑚)) =
𝑂
∑

𝑜=1
𝑀(𝑋, 𝑌 , 𝑜𝑥, 𝑜𝑦, 𝑑𝑖(𝑚)) ⋅ 𝐶𝑘(𝑜𝑥, 𝑜𝑦) ,∀ 𝑜 ∈ 𝑂,

(𝑋, 𝑌 , 𝑜𝑥, 𝑜𝑦, 𝑑𝑖(𝑚)) =
{

1, if 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑋, 𝑌 ) → (𝑜𝑥, 𝑜𝑦) <= 𝑑𝑖(𝑚)
0, otherwise

(3)

where for each item 𝑜 in the complete opportunity universe 𝑂, with
pair of coordinates (𝑜𝑥, 𝑜𝑦), we define a contribution measure 𝐶𝑘,

whose definition depends on the aggregating function to apply on
each 𝑘 family (count, sum, or density). 𝑀(𝑋, 𝑌 , 𝑜𝑥, 𝑜𝑦, 𝑑𝑖(𝑚)) is a di-
chotomic function used to filter all eligible contributing opportunities
at a distance 𝑑𝑖(𝑚).

We briefly comment on the different groups of location opportunity
indices (2). A detailed definition is presented in on-line Appendix A.

• Public and Private transportation indices. The opportunity accessi-
bility indices for public transport aggregate the elements of each
kind (bus stops, metro stations, etc.) at a certain impedance time-
distance. Private transportation opportunities use the length in
meters of highways and the density of the road grid in square me-
ters. These latter measures result in increased utility, by providing
better connectivity in the suburbs of a city, or as a disutility as it
involves higher levels of pollution and noise.

• Economic activity & Basic services indices. These opportunity ac-
cessibility indices refer to access to economic activities, basic
services, residential facilities, employment and leisure. It is no-
ticeable the presence of many of these variables in particular
locations. For instance, hotel, food, tourism and vacation rentals
are usually found in high numbers in specific touristic areas. Con-
sidering low granularity indices by way of increasing isochrones
is important to prevent geographical bias resulting from the mod-
ifiable areal unit problem (MAUP). In this regard some measures
are based upon the sum of total area of certain land uses. The
rationale behind this choice is the assumption that the number
of square meters of residential properties would act as a proxy
of population, whereas the number of meters of office, indus-
trial and commercial space are a proxy of gross employment
concentrations or labor subcenters (Giuliano & Small, 1991).

• Social and Recreational indices. These opportunity accessibility
indices capture relevant socioeconomic variables and recreational
amenities, respectively.

3.2.2. Statistical sources and dataset
We rely on six statistical sources to construct the range of

𝑂𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦𝑖(𝑘)(𝑋, 𝑌 , 𝑑𝑖(𝑚)) accessibility indices entering the hedonic
housing price models. Data refers to the metropolitan area of Madrid
(Spain). With 6.6 million inhabitants in 2020 (829.84 inhabitants/km2),
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Table 2
Catalog of raw opportunity indices.
Category Opportunity: Variable: Measure Source Car Walk

𝑂𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦𝑖(𝑘)(𝑋, 𝑌 , 𝑑𝑖(𝑚)) 𝑘

Public
transportation

bus TRANSPORT.BUS count OSM x x
metro TRANSPORT.METRO count OSM x x
railway TRANSPORT.TRAIN count OSM x x
airport TRANSPORT.AIRPORT count OSM x

Private
transportation

highway ROUTING.HIGHWAY length OSM x x
routing ROUTING.COMPLEXITY density OSM x x

Economic activity &
Basic services

land CAD.URBANLAND area cadastre x x
hotel HOTEL count OSM x x
hotel VACATION count airbnb x x
food FOOD count OSM x x
tourism TOURISM count OSM x x
education CAD.PUBLIC area cadastre x x
education CAD.SCHOOL area cadastre x x
education EDUCATION count OSM x x
tourism TOURISM count OSM x x
health CAD.HEALTH area cadastre x x
commerce SHOP count OSM x x
commerce CAD.COMMERCE area cadastre x x
agriculture CAD.AGRICULTURE area cadastre x x
venues CAD.VENUES area cadastre x x

Social religion CAD.RELIGION area cadastre x x
residential CAD.RESIDENTIAL area cadastre x x

Recreational
park PARK count OSM x x
sport CAD.SPORT area cadastre x x
sport SPORT count OSM x x
Table 3
Summary of data sources.

Source Description Record count

Cadastre
Number of parcels of any land use 569,791
Number of residential parcels 482,203
Number of residential properties 2,878,748

Open Streetmaps Points of Interest (POIs) 38,141

Airbnb Total listed properties 31,142

Isochrones Polygons 344,069
Seed locations 63,187

Idealista.com Total listings on Idealista.com during 2018 1,781,568

INE
Census tracts 4,272
Districts 246
Municipalities 179
m
L

i

Madrid is the most dense populated area in the center of Spain (Euro-
stat, 2020). It also exhibits one of the most active real estate markets
in Europe. Our dataset covers the major aspects of the housing mar-
ket: properties on market, land uses, neighborhood characteristics,
transport network and touristic offering. Table 3 summarizes the main
information on the statistical sources.

Idealista data constitutes also a relevant source of rich data at
the individual property level. It gathers monthly information from a
large set of ads of residential properties on sale in 2018. The site
https://www.idealista.com/ is the major listing of real estate in Spain
with a leading market share. Cadastral data is disaggregated at parcel
and property levels (Registro Central del Catastro, 2018). We use
residential and non residential records. Each cadastral record contains:
construction quality, age and physical and structural features. When
it comes to socio-demographics and educational levels, we process
public data records from the Spanish national institute of statistics
(INE, 2018—on-line [Appendix B] lists the variables included in the
idealista dataset. Open Street Maps supplies key information on the
network transportation graph and points of interest (OpenStreetMap
6

t

contributors, 2017).3 The former is used to generate the time-distance
isochrones for the two transport means of choice: car and walk. Finally,
we use Airbnb (2017) data on vacation rentals to incorporate the effect
of short-term rental market in the model. Cadastral data makes also
another important contribution to our study as it helps identify all
seed locations which are taken as reference for the calculation of the
accessibility indices. Seed locations are based on the placement of
residential parcels as discussed in Section 3.2.4 below.

3.2.3. Idealista listing data
The variables taken from the Idealista dataset comprise all active

ads of residential use (single and multiunit homes) in the Madrid
region. Table 4 details all the relevant variables corresponding to the
Structural 𝑆𝑡

𝑛𝑗 and Market 𝑀 𝑡
𝑛𝑙 dimensions included in the hedonic price

odel (1) (the Structural category comprises the variables referring to
ocation, Unit, Building and Quality).

3 Open geographical databases are increasingly used in hedonic models. For
nstance, Xiao (2017) uses OSM POI for house a price model for Beijing (China)
o tackle spatial autocorrelation.

https://www.idealista.com/
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Table 4
Idealista dataset description.

Class Variable name Description

Date PERIOD Ordinal month code from 1 to 12, mapped to the month in
2018 when the observation was taken

Location
LOCATIONID Idealista website area unit equivalent to administrative divisions
LONGITUDE Longitude in CRS EPSG:4326
LATITUDE Latitude in CRS EPSG:4326

Unit

CONSTRUCTEDAREA Total area in square meters
ROOMNUMBER Number of rooms
ISSTUDIO is it a studio apartment?
ISDUPLEX it is a two-story flat?
HASANNEX has it a boxroom or parking space?
HASAIRCONDITIONING has airconditionining?
FLOOR_POSITION Vertical location of the property in building: B lower stories, M

middle part or T when located in the upper part

Building

HASLIFT has it an elevator?
HASSWIMMINGPOOL has its building a swimming pool?
CONMSTRUCTIONYEAR Year of construction
MAXBUILDINGFLOOR Number of floors in building

Quality CADASTRALQUALITYID Construction quality, numerical from the best 1 to the worst 9
BUILTYPEID Condition: new, second hand not renewed, second hand renewed

Market

PRICE Price in euros
CHANNELID Sales channel for the property: 1 Real Estate agent, 2

bank-owned property and 3 individual seller.
UNITPRICE Price in euros by square meter
ONMARKET_RENT Properties on sale on Idealista/Total built residential properties

in LOCATIONID
ONMARKET_SALE Properties for rent on Idealista/Total built residential properties

in LOCATIONID
RENTSALE_RATIO Properties for rent/on sale on Idealista website
DEMAND Demand intensity, derived from the number of monthly web

views of the advert
1
i
w
a
p
o

To prevent the detrimental effects of anomalous values or repeated
dvertisements we performed an outlier cleanse and deduplication
rocess. It is usual finding multiple ads of the same property since it
s a common practice to sell them through several agents. On the other
and we transform all categorical variables to dummy variables; e.g. in
he case of time the PERIOD consists of 12 monthly dummy variables

for 2018 (see on-line Appendix B).

3.2.4. Discrete space and flexible granularity
We now describe further qualifications of the GIS methodology

aimed at addressing the course of dimensionality, which is one key
issue in spatial analysis. When estimating the hedonic price model
(1) the dimensionality problem emerges from the large number of
combinations of elements that interact within a designated area; in
our case the many 𝑂𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦𝑘(𝑋, 𝑌 , 𝑑𝑖(𝑚)) accessibility features cor-
responding to the number of public transportation stops (bus, tram,
train), economic activities and public services (commerce, education,
health), etc. By reducing the dimensionality of the analysis we can
keep the computation time of the algorithms obtaining the optimal
accessibility indices within reasonable bounds. This is achieved by
limiting the number of areas considered, thereby restricting the location
seeds included in the geographical grid. A criterion compatible with
this reduced dimensionality (which nevertheless is adopted in many
studies) is to set as location seeds those corresponding to the coordi-
nates of all the centroids of cadastrals parcels with residential dwellings
(i.e., industrial areas are excluded since we focus on residential prop-
erty). These administrative centroids constitute the precise locations
from where we calculate the different isochrones and their associated
accessibility measures.

We reduce the number of seeds without compromising the required
geographical precision. For this goal we consider two granularity levels
for the location seeds depending on the transportation mode. Specifi-
cally we consider a Geohash H3-10 level resolution for walking and a
7

9 level resolution for driving (see https://h3geo.org/). Areas with this h
resolution are enough for the analysis. In the case of H3-10 resolution
the average error in distance to a specific landmark is 50 m, corre-
sponding on average to half a minute walking (a minute by foot at the
standard pace covers 100 m), and far less than that by car. In summary,
as shorter than a minute travel time does not make a difference for
individuals, we believe the chosen resolutions are adequate for walking
and driving, which is compatible with the limitation of the number of
areas considered to address the dimensionality issue. That way we find
a suitable balance by trading unnecessary geographical granularity for
gains in computational performance. Fig. 1 illustrates the generation of
cadastral location seeds for the whole Madrid region.

Following existing methods, the geographical information on the
attributes is translated from the continuous coordinate space (generally
represented as a vector of real numbers: latitude and longitude) into
a discrete space. Our approach relies on an existing Discrete Global
Grid System DGGS, that employs a tessellated spaced composed by
polygonal (hexagonal) shapes (Bondaruk, 2019). The DGGS creates a
numerical identifier for each hexagon. Also, for technical convenience
we use Uber H3 tessellation (Uber, 2018) as it is available in a number
of databases and programming languages.

Fig. 2 illustrates the degree of granularity for accessibility measures
considering the 9 level resolution for driving times (left) and the 10
level resolution for walking times (right). For the 9 level resolution
hexagons have an edge length of approximately 174 m, while in the
10 level resolution they have 66 m.

Finally, we adopt an additional criterion to further reduce the
dimensionality problem by assuming that the influence of differences
in transportation cost within the isochrone crown defined by the 5 and
0 min walking are not relevant for the analysis. This implies that
ndividuals do not perceive a substantial change in the utility level if
e take different destination points in this range. The series of raw
ccessibility indices used in this study, corresponding to the variables
resented in Table 2 and calculated according to Eq. (2) for the city
f Madrid using the H3 grid at 9 and 10 resolutions, are available at

ttps://github.com/davidreyblanco/accessibility/tree/master.

https://h3geo.org/
https://github.com/davidreyblanco/accessibility/tree/master
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Fig. 1. Comunidad de Madrid (left) and cadastral seed locations (right).
Fig. 2. H3 resolutions used for the seed locations. We used resolution 9 reachable opportunities by car and level 10 reachable on foot.
4. Calculating the optimal (or best of breed, 𝑨𝒕𝒎∗
𝒏𝒌 ) and orthogonal

(or boosted, �̂�𝒕𝒎∗
𝒏𝒌 ) accessibility indices: Algorithms

In this section, we introduce the computational methods (algo-
rithms) used to select the optimal (best of breed) accessibility in-
dices, whose correlation with the residuals of a naïve ordinary least
squares housing price model excluding locational attributes is the
highest. Based on the assumption that these indices will be able to
capture the effect of the locational attributes, we then further improve
their definition by obtaining their orthogonal (boosted) representation
through principal components analysis, whose meaning can be clearly
interpreted through their corresponding loading factors.

Hence, the new methodology proposed to calculate the orthogo-
nal (or boosted) accessibility indices 𝐴𝑡𝑚∗

𝑛𝑘 starts out by selecting the
best accessibility index for each one of 𝐾 =26 variables presented
in Table 2. The selection is made from the set of raw indices, 𝐴𝑡𝑚

𝑛𝑘,
based on the 𝑂𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦𝑖(𝑘)(𝑋, 𝑌 , 𝑑𝑖(𝑚)) features, that are defined for
alternative values of 𝛽𝑚. Subsequently, as described below, we obtain
a set of 𝑘 = 1,… , 𝐾 optimal accessibility indices 𝐴𝑡𝑚∗

𝑛𝑘 by choosing
the 𝛽𝑚 that maximizes the correlation with the errors of a naïve OLS
model that omits the accessibility variables but includes the rest of
attributes (𝑆𝑡

𝑛𝑗 ,𝑀
𝑡
𝑛𝑙 , 𝐷

𝑡
𝑛𝑘). Then, these optimal indices are transformed

into a set of orthogonal accessibility indices using principal components
analysis. This transformation reduces the need for covariate treatment
by removing collinearity among the indices, thereby improving the
performance of the final regression model.

The whole process takes place in three steps that are programmed
in two algorithms described in Fig. 3. The first one creates the family
of candidate raw accessibility indices whereas the second is in charge
8

of selecting the best performing ones by an heuristic approach, and
subsequently, perform the principal components analysis.4

4.1. Algorithm 1 - generating the locational seeds and candidate raw
accessibility indices (𝐴𝑡𝑚

𝑛𝑘)

Once we determine the seed locations following the procedure de-
scribed above, we define the associated isochrone areas. For each
location seed we have a set of isochrone areas for the series of time-
distances: 𝑑𝑖(𝑚=𝑐𝑎𝑟) and 𝑑𝑖(𝑚=𝑤𝑎𝑙𝑘). Fig. 4 illustrates the concentric rings
defined around a specific seed.

Then, for each one of the rings we calculate all 𝑂𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦𝑘
(𝑋, 𝑌 , 𝑑𝑖(𝑚)) indices and consolidate them into the location accessibility
index using the following values of 𝛽𝑚: 0.005, 0.01, 0.025, 0.05, 0.25,
0.5, 0.75, 1, and 2. Hence we obtain a family of 9 raw accessi-
bility indices as presented in Eq. (2), each for a 𝛽𝑚 value. That is
𝐴𝑡𝑚
𝑛𝑘 =

∑𝐼
𝑖(𝑚)=1 𝑂𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦𝑖(𝑘)(𝑋, 𝑌 , 𝑑𝑖(𝑚)) ⋅ 𝑒

−𝛽𝑚⋅𝑑𝑖(𝑚) , 𝑚 = {car, walk}, 𝛽𝑚 =
1,… , 9. To calculate these indices we implement the following algo-
rithm:

4.2. Algorithm 2 - selection of optimal (𝐴𝑡𝑚∗
𝑛𝑘 ) and orthogonal (�̂�

𝑡𝑚
𝑛𝑘) acces-

sibility indices for hedonic price models

With all these candidate indices, 9 per opportunity variable, we
initiate our second algorithm to determine which one would be the best
performing in the hedonic price model (1). As aforementioned, to avoid

4 The Python scripts for the algorithms are available from the authors upon
request.
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Fig. 3. Complete workflow for algorithms 1 and 2.
Fig. 4. Isochrone concentric rings are the areas reachable on foot at 5, 10, 20,30 min from a location seed.
the evaluation of all combinations of variables and configurations,
we follow a univariate heuristic approach consisting of selecting the
𝛽𝑚 that yields the greatest correlation with the residuals of a naïve
hedonic price model calculated without any locational information, but
including the rest of the structural, market and time dummy variables:
(𝑆𝑡

𝑛𝑗 ,𝑀
𝑡
𝑛𝑙 , 𝐷

𝑡
𝑛𝑘). The statistical rationale is the following: without any

of the locational variables presented in Table 2, the residuals of such
naïve model will show a high degree of spatial correlation (hypothesis
corroborated in our empirical tests in section 6.2 below). Given this spa-
tial non-stationarity, it is certain that any variable correlated with the
residuals would be also correlated with the omitted spatial attributes,
9

hence being a good candidate as a predictor for the model. The heuristic
approach makes a selection of the best performing configuration for
each characteristic with the expectation of reducing the spatial bias of
the naïve model. This procedure represents a simplified version of a
boosting algorithm, see Friedman (2002).

Since the set of optimal accessibility indices 𝐴𝑡𝑚∗
𝑛𝑘 may be correlated

to each other, we finalize the second algorithm performing a Principal
Component Analysis (PCA) to remove collinearity among variables
(Abdi & Williams, 2010). Multicollinearity does not reduce predictive
power yet it is detrimental to statistical inference by making the
predictor coefficients and the 𝑅2 measure less reliable (Orford, 2017).
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Data: Cadastral Data, Open Street Maps network and POI
Result: Gravitational accessibility candidate Index
Generate seeds from coordinates of cadastral parcels with
residential use;
forall Location Seeds do

Generate isochrones for: 5, 10, 20, 30, 40, 50, 60 minutes;
forall Isochrones do

forall Opportunity Index Category do
Generate Opportunity index value;

end
end
forall Opportunity Index Category do

forall 𝛽𝑚 in 0.005, 0.01, 0.025, 0.05, 0.25, 0.5, 0.75, 1, 2
do

Create gravitational accessibility Index for Opportunity
Index and 𝛽𝑚;

end
end

nd

lgorithm 1: Part I - Generation of the family of raw acces-
sibility indices: ∑𝐼

𝑖(𝑚)=1 𝑂𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦𝑖(𝑘)(𝑋, 𝑌 , 𝑑𝑖(𝑚)) ⋅ 𝑒−𝛽𝑚⋅𝑑𝑖(𝑚) , 𝑚 =
ar, walk, 𝛽𝑚 = 1, ..., 9.

Table 5
Principal Components loadings - Walk mode.

Name COMP
WALK
1

COMP
WALK
2

COMP
WALK
3

COMP
WALK
4

VACATIONAL 0.93 0.19
TRANSPORT BUS 0.72 0.63
TOURISM 0.92 0.23
SHOP 0.85 0.44
HOTEL 0.95 0.13

FOOD 0.93 0.29
CAD VENUES 0.91 0.35
CAD RELIGION 0.77 0.59 0.12
CAD PUBLIC 0.88 0.39 0.10
CAD OFFICE 0.75 0.56 0.13

CAD HOTEL 0.83 0.51
CAD COMMERCE 0.70 0.68
TRANSPORT METRO 0.54 0.74 0.15
SPORT 0.18 0.86 0.10
PARK 0.46 0.78

HEALTH 0.64 0.70
EDUCATION 0.52 0.80 0.16
CAD SCHOOLS 0.57 0.77 0.15
CAD RESIDENTIAL 0.58 0.76 0.13
CAD INDUSTRY 0.85

ROUTING COMPLEXITY 0.11 0.12 0.98
CAD SPORT 0.17 0.97
TRANSPORT TRAIN 0.35 0.28
ROUTING HIGHWAY 0.21 0.25

Transformed variables retain the information from the original indices
while conforming a set of new orthogonal variables called principal
components. Consequently, the obtained accessibility components �̂�𝑡𝑚∗

𝑛𝑘
are orthogonal among themselves, and therefore can be employed to
estimate the hedonic housing price model without worrying about the
likely multicollinearity of the raw accessibility indices.

In on-line Appendix C we present the best performing 𝛽∗𝑚 for each
location accessibility index. We observe that the car mode demands
a stronger exponential decay with a median value equal to 𝛽∗𝑐𝑎𝑟 =
.05, whereas the median value for walking stands at 𝛽∗𝑤𝑎𝑙𝑘 = 0.005.
hese values imply a decay factor for a 10 min trip equivalent to
9.35% and 4.89%, respectively (calculated as 1 − 𝑒−𝛽∗𝑚 ⋅ 10 𝑚𝑖𝑛𝑢𝑡𝑒𝑠). We
llustrate our results in Fig. 5 showing the optimal accessibility indices
10
ata: Gravitational accessibility candidate Index
esult: Best performing gravitational indices (best of breed and

orthogonal)
reate naïve regression OLS hedonic model ;
tandardize model residuals ;
orall Gravitational accessibility candidate Index do

Calculate Pearson Correlation Index between standardized
residuals and candidate Index ;

end
forall Raw Opportunity Index do

Select candidate index with the highest abs(correlation index)
as Best-Of-Breed candidate;

end
Create Orthogonal Accessibility indices using Principal
Components Analysis from best of breed indices

Algorithm 2: Part II - Selection of best of breed location
accessibility indices

𝐴𝑡𝑚∗
𝑛𝑘 for selected variables. We show only results for walk indices

given the European urban configuration of Madrid, characterized by
a compact layout and high population densities—in comparison to
American cities whose urban sprawl normally requires transportation
by car. Lighter colors indicate greater access to opportunities. For
example, hotels (WALK_ HOTELS) are highly concentrated in the city
center whereas Health services are more evenly distributed across the
city (WALK_HEALTH).

4.3. Orthogonal (�̂�𝑡𝑚
𝑛𝑘) accessibility indices

Finally, the principal components analysis yields 6 orthogonal ac-
cessibility indices (�̂�𝑡𝑚

𝑛𝑘) for the walk and car transport modes, which
respectively account for 94.7% and 98.3% of the variance of the
respective raw accessibility measures—on-line Appendix D shows the
principal components’ scree tables for both transportation modes. The
principal components are denoted by COMP_WALK_* and COMP_CAR_*
in the regression results. Fig. 6 illustrates the three main accessibility
components for walking (in terms of their eigenvalues).

The interpretation of these components follows the five categories
presented in Table 2. To discern their meaning we calculate the PCA
loadings, shown in Tables 5 and 6. The loadings measure the degree
of contribution of each variable to the orthogonal accessibility indices.
Also, to improve its readability we apply a Varimax rotation to the orig-
inal values (Kaiser, 1958). This transformation, based on maximizing
the variances of the squared loadings, maintains the original structure
of data, although maximizing the distinction and differentiation of
variable and factor correlations. Detailed results of the transformation
method are provided in Tables A3 and A4 in on-line Appendix D, pre-
senting the extraction and rotated sums of squared loadings. Again, the
orthogonal (or boosted) accessibility indices obtained in this study after
applying the optimization process and principal components analysis
are available at https://github.com/davidreyblanco/accessibility/tree/
master.

As we see in Table 5 presenting the raw indices’ loadings, the first
principal component COMP_WALK_1 refers to areas with a high degree
of hotels, leisure services, commercial areas and well connected with
public transport and with a high existence of touristic POIs. The second
component highlights the immediate outer ring of the city center,
affluent residential urban areas from a urban standpoint. Consequently,
we see a lower correlation with touristic amenities, hotels and restau-
rants and offices but still well connected and with a high presence
of commerce and residential areas. The third and fourth components
do not contribute to reduce the dimensionality of the analysis as they
are mainly related to a single variable. We see that they are related
to access to areas with high road density (normally congested which

https://github.com/davidreyblanco/accessibility/tree/master
https://github.com/davidreyblanco/accessibility/tree/master
https://github.com/davidreyblanco/accessibility/tree/master


Expert Systems With Applications 235 (2024) 121059

11

D. Rey-Blanco et al.

Fig. 5. Optimal accessibility indices (𝐴𝑡𝑚∗
𝑛𝑘 ).

Fig. 6. Orthogonal accessibility indices �̂�𝑡𝑚∗
𝑛𝑘 for walk mode.
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Table 6
Principal Components loadings - Car mode.

Name COMP
CAR 1

COMP
CAR 2

COMP
CAR 3

COMP
CAR 4

TRANSPORT BUS 0.95 0.24 0.15
TRANSPORT AIRPORT 0.71 0.56 0.15
TOURISM 0.91 0.34 0.13
SHOP 0.93 0.31 0.14
HOTEL 0.96 0.19 0.11

HEALTH 0.95 0.25 0.14
CAD VENUES 0.94 0.30 0.15
CAD URBAN LAND 0.81 0.45 0.17
CAD SCHOOLS 0.90 0.37 0.15
CAD RELIGION 0.93 0.32 0.14

CAD PUBLIC 0.92 0.35 0.15
CAD OFFICE 0.90 0.37 0.14
CAD INDUSTRY 0.79 0.54 0.15
CAD HOTEL 0.94 0.30 0.14
CAD COMMERCE 0.92 0.33 0.15

CAD AGRICULTURE 0.68 0.54 0.13
TRANSPORT TRAIN 0.66 0.68 0.14
SPORT 0.49 0.85 0.10
PARK 0.50 0.85 0.11
EDUCATION 0.97

CAD SPORT 0.29 0.74
CAD RESIDENTIAL 0.49 0.85 0.11
ROUTING HIGHWAY 1
ROUTING COMPLEXITY -0.41 -0.20 -0.89

favors walking) and sport facilities, respectively. Focusing on the car
transportation mode, Table 6, we observe that the first one is also
related to touristic and commercial areas, public transportation by
bus, and office campuses and industrial areas normally found in the
periphery of the city that are mainly accessible by car. The second
component is related to some social, recreational (park, sport) and
educational opportunities, while the third is fully correlated with the
extent of the highway system, again accessible by car only. Interest-
ingly, the fourth and final component captures the disutility associated
to traffic congestion in European cities like Madrid in areas with a high
concentration of roads, avenues, streets, etc., which are permanently
clogged, thereby discouraging the use of private car. A similar degree of
interpretability is found by Čeh et al. (2018) in their hedonic model for
Ljubljana that applies PCA to all explanatory variables, but including
standard distance-based accessibility to transport infrastructure, public
services and POI.

5. Results: Regression and machine learning approaches

In this section, we put to the test our newly created orthogonal
(boosted) accessibility indices by including them as explanatory vari-
ables in the standard hedonic housing price model (1). We estimate
this model using different regression methods and machine learning
techniques, and conclude their superiority over specifications that ei-
ther disregard accessibility attributes, or include them though simple
locational dummies. The increased accuracy (uplift) of the estimations
including the new indices is measured through the usual error metrics.

5.1. Sample

For the implementation of the hedonic price model (HPM) and
to check the robustness of the results, we consider three incremental
models, each with the following variations of the dataset:

• None: Uses the original Idealista data presented in Table 4
with all accessibility-wise variables removed. This constitutes the
aforementioned naïve model. We assume this model as a baseline
scenario to benchmark the performance of the model including
the accessibility indices.
12
• Dummy: Following common practice, this specification models
location through the inclusion of a binary variable for each dis-
trict (location dummy), intended to capture the difference in price
from one geographical area to another.

• Accessibility: The most comprehensive specification. It includes
the orthogonal (or boosted) accessibility indices obtained through
principal component analysis.

5.2. Hedonic housing price model algorithms

To estimate housing prices we rely on a range of modeling tech-
niques, including regression models and machine learning models As
previously anticipated, for the econometric approach we use the stan-
dard OLS model to test if the orthogonal location indices perform well
in terms of expected signs and statistical significance. In this regard
we avoid the use of more complex approaches like local regressions.
Given that the main goal of our study is to maximize the accuracy in
predicting house prices, in the machine learning approach we include
complex tree models. These models are capable of overcoming some of
the limitation of regression models, although they are more difficult to
tune and prone to over-fitting, especially in the case of boosting models.

We select a total of four models: the first two based on regression
analysis and the last two on machine learning. For each approach there
is a basic specification, followed by an improved method.

• Ordinary Least Squared Regression, OLS. Standard model esti-
mating the parameters of a linear function by minimizing the sum
of squared residuals.

• Lasso and Elastic-Net Regularized Generalized Linear Models,
LERG. This method also estimates a linear regression model
using a cyclical coordinate descent, computed along a regulariza-
tion path—as implemented in the ‘glmnet R’ package (Friedman,
Hastie, & Tibshirani, 2009). The method performs both a L1
(lasso) and L2 (ridge) penalties regularization. It is specially
suited to our study given its large dimensionality and feature
sparsity.

• Recursive Partitioning Trees, RP Trees. A basic regression
tree model CART implemented from the ‘rpart R’ package (Th-
erneau, Atkinson, Ripley, & Ripley, 2022). Originally proposed
by Breiman in 1984 (Breiman, 2017), the model is built using a
two stage procedure that results in binary decision trees.

• Random Forests, R Forests. This method is also a tree-based
machine learning model that estimates the regression magnitude
as a consensus of a number of models (Breiman, 2001). It operates
by constructing a multitude of decision trees at training time and
outputting mean prediction (regression) of the individual trees.
This approach solves the overfitting problems that tree models
exhibit (i.e., models do not generalize properly when replicating
the training set behavior). It is also commonly used in the industry
for HPM for its capacity to combine accuracy, generalization
power and ability to capture non-linear relations. We use the
‘ranger R’ package by Wright and Ziegler (2015).

The four methods are estimated selecting as dependent variable unit
prices (i.e., euros per square meter, held in the UNITPRICE variable).
As anticipated, we have taken this target variable as it is less sensitive
to heteroscedasticity and selection biases compared with the overall
price of properties. Cross validation is chosen for assessing the model’s
performance and generalization ability for three reasons (Hastie, Tib-
shirani, & Friedman, 2017): first, it reduces the bias of using a single
training and testing set; second, it provides a more reliable estimate of
the model’s generalization ability; and third, it helps identify overfit-
ting. Arlot and Celisse (2010) stated that the optimal partition of the
dataset (N -fold) ranges between 5 to 10. Thus, we decide to use a 5-
fold configuration, enabling a proper balance between statistical and
computational performance. Then data is shuffled and split into five
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Table 7
OLS Regression coefficients.

Estimate Std.error t value Pr(> |t|) Signif.

(Intercept) 3035.07 23.16 131.06 < 2e−16 ***
CONSTRUCTEDAREA −0.81 0.05 −14.90 < 2e−16 ***
FLATLOCATION 159.70 4.41 36.24 < 2e−16 ***
ROOMNUMBER −160.94 2.21 −72.76 < 2e−16 ***
ISSTUDIO −57.70 16.67 −3.46 5.38e−04 ***

ISPENTHOUSE 443.48 6.90 64.25 < 2e−16 ***
HASLIFT 508.33 4.24 119.92 < 2e−16 ***
MAXBUILDINGFLOOR 20.32 0.63 32.18 < 2e−16 ***
HASANNEX 249.37 2.68 93.17 < 2e−16 ***
COMP_WALK_1 324.17 1.87 173.26 < 2e−16 ***

COMP_WALK_2 58.61 1.00 58.75 < 2e−16 ***
COMP_WALK_3 111.91 1.90 58.81 < 2e−16 ***
COMP_WALK_4 168.62 1.77 95.35 < 2e−16 ***
COMP_CAR_3 −736.53 19.97 −36.89 < 2e−16 ***
RENTSALE_RATIO 139.23 6.04 23.07 < 2e−16 ***

ONMARKET_SALE 4191.73 115.98 36.14 < 2e−16 ***
ONMARKET_RENT 3139.32 81.44 38.55 < 2e−16 ***
DEMAND −27.69 0.25 −111.29 < 2e−16 ***
PERIOD_2018_01_31 −353.88 7.35 −48.14 < 2e−16 ***
PERIOD_2018_02_28 −306.01 7.39 −41.39 < 2e−16 ***

PERIOD_2018_03_31 −258.98 7.30 −35.49 < 2e−16 ***
PERIOD_2018_04_30 −210.42 7.36 −28.59 < 2e−16 ***
PERIOD_2018_05_31 −163.17 7.37 −22.15 < 2e−16 ***
PERIOD_2018_06_30 −129.71 7.31 −17.74 < 2e−16 ***
PERIOD_2018_07_31 −86.55 7.24 −11.96 < 2e−16 ***

PERIOD_2018_08_31 −49.55 7.21 −6.87 6.28e−12 ***
PERIOD_2018_09_30 −35.90 7.38 −4.87 1.14e−06 ***
PERIOD_2018_10_31 −10.67 7.23 −1.48 1.40e−01
PERIOD_2018_11_30 0.04 6.85 0.01 9.96e−01
CADASTRALQUALITYID_1 509.35 25.55 19.93 < 2e−16 ***

CADASTRALQUALITYID_2 272.94 19.16 14.25 < 2e−16 ***
CADASTRALQUALITYID_3 92.66 17.56 5.28 1.32e−07 ***
CADASTRALQUALITYID_4 −126.82 17.23 −7.36 1.84e−13 ***
CADASTRALQUALITYID_5 −358.96 17.33 −20.71 < 2e−16 ***
CADASTRALQUALITYID_6 −363.26 17.40 −20.88 < 2e−16 ***

CADASTRALQUALITYID_7 −371.33 17.78 −20.89 < 2e−16 ***
CADASTRALQUALITYID_8 −433.18 21.10 −20.53 < 2e−16 ***
equally sized folds to be used in the corresponding experiments: one
split is reserved for testing and the rest for training. Subsequently, we
build and test the model five times and average the results of the five
experiments. Performance measures are calculated as the average of the
five executions.5 Finally, each algorithm is tuned by a parametrization
analysis called grid search. This process tests several configurations
and selects the best performing parameter sets. More details on the
parametrization of the algorithms are provided in on-line Appendix E.

Before performing the 5-fold cross-validation of the models, Table 7
reports the results of the standard OLS approach for the whole sample.
This allows us to show the basic relationship between the explanatory
variables and house prices. Given the urban configuration of Madrid,
favoring walk accessibility and public transportation, we rely on the
first four walk accessibility indices presented in Table 5. The acces-
sibility variables captured by these components make it unnecessary
to include their car counterparts that are related to the same vari-
ables: hotel, tourism, commercial, etc. (i.e., walk and car components
are positively correlated capturing the same information). The only
exception is the third car component that is highly correlated with
accessibility to highways and is not adequately represented by the
walk components. Indeed, this component preserves the orthogonality
constraint among accessibility covariates, given it is the least correlated
with the walk components (displaying an average Pearson correlation
coefficient to walk components of 0.16 in absolute terms). Moreover,

5 To prevent biased results when sampling for cross-validation the dataset
s grouped by unique advertisement identifier, as the same ad can be found in
ore than one monthly record.
13
using the first four components for walk mode plus the third for
car mode we jointly account for 92% of the variance. Results show
that the coefficient of each selected accessibility component exhibits
the expected sign and is statistically significant. The first component,
COMP_WALK_1, displays a positive correlation to price in the OLS
regression coefficients. This is corroborated by the spatial layout of
values of the component, as shown in Figure A1 of on-line Appendix F,
presenting the spatial distribution of prices and Figure A2 depicting the
spatial layout of the components (the lighter the color the higher the
value). Therefore the city center has higher values as it comprises areas
with a large concentration of touristic establishments, shops and public
transportation stops. Similar analyses can be made for the remaining
walk components. Interestingly, the car component presents a negative
sign, reflecting the disutility that brings being closer to highways (that
is, away for the city center). This simply captures that in Madrid’s case,
housing in the periphery of the city along the highway network is less
expensive. The rest of the covariates related to structural, market and
time dummy variables exhibit the expected signs and are all significant
at the 0.1% level. It is worth noting that looking at the sign and
decreasing values of the time dummies, a general increase in prices took
place throughout 2018.

5.3. Comparing methods: performance metrics

Table 8 presents the different metrics that are used in the study
to benchmark model performance. These metrics are common and
provide a standard representation of accuracy and predictive power.
The performance of each method is measured in absolute terms through

the Mean Absolute Error, 𝑀𝐴𝐸, and the Median Absolute Error, 𝑀𝑒𝑑𝐴𝐸.
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Table 8
Metrics used for measuring hedonic model fit and accuracy.

Measure Formula

Mean absolute error 𝑀𝐴𝐸 = 1
𝑛

𝑛
∑

𝑡=1
𝑒2𝑡

Median absolute error 𝑀𝑒𝑑𝐴𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛 |𝑒𝑖|

Mean absolute percentage error 𝑀𝐴𝑃𝐸 = 1
𝑁

𝑁
∑

𝑖=1

|𝑒𝑖|
𝑥𝑖

R Squared, 𝑅2 𝑅2 = 1 −
𝜎2
𝑟𝑒𝑠𝑖𝑑

𝜎2

It is also measured in relative terms by way of the Mean Absolute
Percentage Error, 𝑀𝐴𝑃𝐸. We also report the correlation coefficient, 𝑅2,
and the models’ uplift by calculating the reduction in the 𝑀𝐴𝑃𝐸 with
respect to the naïve baseline model ‘None’.

5.4. Which model performs best?

Table 9 summarizes the performance of each method with respect
to the chosen metrics. Regardless of the estimation method, the model
including the optimal accessibility indices (Accessibility) outperforms
its locational dummies counterpart (Dummy). We see a reasonable
good performance of the naïve specification with no specific location
attributes (None), however it carries area information as it contains the
variables related to the location, such as the structure of the property
and market features for their districts (see the Idealista dataset in
Table 4). It is noticeable the good performance of the regressions
methods, OLS and LERG, meaning that these variables are properly
capturing the influence of locational attributes on price. Note also, that
more complex LERG even yields marginally better results. On their
part, simple trees (i.e, RP Tree) are not apparently able of generalizing
location interactions with this set of variables, most likely due to not
being sufficiently complex enough to incorporate location variables
in detriment of other significant variables in the algorithm, such as
the structural or market ones. However, the use of random forests
(R Forests) presents the best performance indicators by far. Notice
that despite the reduced number of principal components used, and
thanks to the optimizing algorithms applied to generate them, our
models display similar or even higher accuracy levels than others
in the literature considering a larger number of locational variables.
For instance, the study for the city of Madrid by Del Cacho (2010),
using real estate portal data but relying on a smaller sample (25,415
observations), obtains a mean percentage error of 15.25%.

6. Spatial robustness and spatial autocorrelation

In this section, we study the spatial robustness of the previous
hedonic price estimations. Assuming that our newly proposed orthog-
onal (or boosted) indices capture the effect of locational attributes on
prices, their estimated values should exhibit low spatial autocorrela-
tion. We rely on cross-validation and calculate the usual error metrics
and Moran’s coefficient to conclude the superiority of the proposed
methods.

6.1. How spatially robust is the use of orthogonal accessibility indices �̂�𝑡𝑚∗
𝑛𝑘

As the previous results could be spatially biased or present too much
over-fitting we challenge the models with spatial cross validation. This
method is similar to a regular cross-validation but considering also
non geographically overlapped folds. We establish five areas, 5-folds,
one held out for validation and the rest four being used to construct
the model. The main implication of this approach is that models are
constructed with data from different locations than those considered
in the validation. Therefore if a model fits the validation data, then
it can be concluded that its locational attributes are properly modeled
through the accessibility indices.
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Table 10 reports the results for the cross-validation exercise. Again,
we measure the degree of improvement of each model by the uplifting
precision obtained with respect to the naïve specification excluding
locational attributes. Again, the best performance of the ‘Accessibility’
model is a sign of the capability of the orthogonal (or boosted) indices
in capturing the effect of the different location interactions on house
prices. Further confirming this result is the remarkable uplift obtained
with the linear regression models (OLS and LEGR), which is on par with
that obtained using machine learning techniques (Random Forests).
However, the fact that random forests does not display a greater advan-
tage over linear models suggests the existence of spatial over-fitting.
This implies that this model can adjust for the existing interaction
between locational attributes, but it is incapable of modeling new
patterns such as those found in the validation data. This inability to
learn and provide a general framework to explain spatial interactions
finally shows up in the form of higher mean absolute percentage errors.
Therefore, a main takeaway of our comparison of methods is that for
areas with new urban configurations it might be preferred to rely on
more parsimonious (and simpler) linear models.

In addition, to check whether the model performs better or worse
across the Madrid area, we also measure the goodness-of-fit at the
spatial level using a pseudo local 𝑅2 over the hexagonal H3 grid. This
statistic compares the relationship of the model’s residuals for each tile
𝜖(𝑋,𝑌 ) divided by the global target variable’s variance—where, again,
(𝑋, 𝑌 ) refers to each tile centroid.

𝑃𝑠𝑒𝑢𝑑𝑜 𝑙𝑜𝑐𝑎𝑙 𝑅2 = 1 −
𝜎2(𝜖(𝑋,𝑌 ))

𝜎2(𝑝𝑟𝑖𝑐𝑒∕𝑚2)
(4)

As shown Fig. 7, 𝑅2 decreases when we include the orthogonal
accessibility indices, being this reduction higher for the machine learn-
ing (Random Forests) model. We observe that the city center is most
prone to yield lower 𝑅2. This result might be caused by the nature
of this submarket, as it does not behave as a pure residential area
when compared with the rest of markets in the city, resulting in higher
variability in prices. The uses of residential properties in Madrid’s city
center are mixed, including not only residential, but also short-term
vacation rentals and professional purposes. However, in general, we
conclude that introducing accessibility indices results in a notable gain
in the goodness-of-fit. Still most centric areas are subject to higher
model bias in all cases.

6.2. Are orthogonal accessibility indices �̂�𝑡𝑚∗
𝑛𝑘 effective in controlling for

spatial autocorrelation?

To test the hypothesis that the use of orthogonal accessibility indices
is capable of capturing the effect of location interactions on housing
prices, we measure the degree of autocorrelation of models’ residuals.
If accessibility indices capture the influence of location they would turn
our hedonic price models’ residuals into a spatial stationary process.
Expressed from another angle, if the models are perfectly specified
in terms of the considered variables, they will capture the effect of
geographical features on housing prices, and therefore the model resid-
uals will be uncorrelated with locational attributes. In spatial patterns
it is expected that nearby observations share similar characteristics
while differing from those located farther away. We rely on Moran’s
I coefficient of spatial autocorrelation for the analysis (Moran, 1950)
In its simplest form, Moran’s index is calculated by assigning weights
to neighboring observations: 1 for bordering locations, and 0 otherwise.
These weights constitute the so-called neighboring function, which can
be defined in terms of proximity matrices that use different criteria
(e.g. pair-wise distances among locations). Moran’s index for a given
variable of interest 𝑥 is defined as follows:

𝐼 = 𝑛
𝑆0

𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
𝑤𝑖𝑗 (𝑥𝑖 − �̄�)(𝑥𝑗 − �̄�)

𝑛
∑

(𝑥𝑖 − �̄�)2
, (5)
𝑖=1
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Table 9
Regular cross validation with 5 folds benchmark.

Method Model Mae Medae Mape R2 Uplift

OLS
None 712.15 532.50 22.5% 0.68
Dummy 638.92 455.16 19.2% 0.72 10.3%
Accessibility 619.73 446.61 18.8% 0.74 13%

LERG
None 711.94 531.94 22.5% 0.68
Dummy 638.76 454.96 19.2% 0.72 10.3%
Accessibility 619.49 446.16 18.7% 0.74 13%

RP Tree
None 559.91 397.00 17.6% 0.77
Dummy 558.62 395.39 17.5% 0.77 0.2%
Accessibility 534.86 381.36 16.9% 0.79 4.5%

R Forest
None 443.61 285.48 13.5% 0.85
Dummy 392.02 209.03 12% 0.85 11.6%
Accessibility 347.68 176.56 10.6% 0.88 21.6%
Table 10
Spatial cross validation with 5 folds benchmark.

Method Model Mae Medae Mape Uplift

OLS
None 1077.34 884.43 39.1%
Dummy 930.36 751.79 31.8% 13.6%
Accessibility 704.67 561.28 24.1% 34.6%

LERG
None 1077.43 884.45 39.1%
Dummy 999.60 824.16 35.7% 7.2%
Accessibility 703.92 560.15 24.0% 34.7%

RP Tree
None 1187.67 1010.30 43.2%
Dummy 1079.59 934.13 36.8% 9.1%
Accessibility 842.44 679.91 28.3% 29.1%

R Forest
None 1078.52 892.49 38.6%
Dummy 998.55 822.26 33.8% 7.4%
Accessibility 697.07 538.72 23.0% 35.4%
Fig. 7. Orthogonal accessibility for walk transport mode indices.
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where 𝑤𝑖𝑗 is the weight between observation 𝑖 and 𝑗, 𝑥𝑖 and 𝑥𝑗 are
their respective variables of interest, and 𝑆0 is the sum of all 𝑤𝑖𝑗 ’s:
0 =

∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝑤𝑖𝑗 , 𝑤𝑖𝑖 = 0.

Our baseline for the comparison is the global autocorrelation of
esiduals estimated from the naïve OLS model excluding the location
ariables. The obtained global autocorrelation is 0.652, which reduces
o 0.374 for the ‘Accessibility’ model including the orthogonal acces-
ibility indices. For the Random Forests, the inclusion of the location
ndices reduces Moran’s I statistic to just about zero: 0.030. More
etailed data is available in on-line Appendix G. We conclude that
he optimal accessibility variables, calculated through our automated
rocess, help reduce significantly the autocorrelation of the models’
esiduals, overcoming the major drawback of having to define before-
and the accessibility covariates as in Morali and Yilmaz (2020) or Čeh
t al. (2018).

. Conclusions and future research

The results obtained confirm that our proposed methodology to
ncorporate qualified accessibility indices into hedonic housing price
odeling, which are calculated through an automated process com-

ining geographical information systems (used of discrete global grid
ystem, DGGS) and statistical methods (i.e., principal components anal-
sis), is capable of capturing the effect of locational attributes, thereby
mproving estimation performance, both in terms of goodness-of-fit and
patial correlation (Diewert & Shimizu, 2021). Our methodology aims
t improving the predictions of real state prices for academic research,
nstitutional use (e.g., statistical offices) and industry stakeholders. The
se of optimal accessibility indices over a bandwidth of isochrones
esults in better performance than the traditional location dummy
pproach or the use of simple accessibility variables based on distance
nd time measures (Heyman & Sommervoll, 2019), while reducing
otably the effects of spatial autocorrelation. The performance gain
s seen with several modeling methods: it reaches a 13.0% accuracy
plift in the regressions, way higher than for recursive partition trees,
.5%, but lower than for random forests, 21.6%. As for the performance
ain in terms of spatial correlation, they are on par for the three
odels: 34.6% (OLS), 29.1% (RP Trees) and 35.4% (RF). Therefore
e conclude that, compared to previous results in the literature where

he superiority of machine learning methods for price prediction was
ndisputed, the use of our methodology can bring new arguments
n favor of regression analyses, given their good performance and
xplanatory capacity. Nevertheless machine learning techniques like
andom forests are still capable of handling multiple types of location
nd price spatial interactions, especially nonlinear ones, see Rico-Juan
nd Taltavull (2021). Moreover, they overcome major limitations of
edonic regressions, which specify a single interaction rule for all areas,
hereas the random forests model sets particular tree rules for the
ifferent areas, thereby adjusting these rules when needed.

Methodologically, the most important contributions of our study
re: (1) the reduction of complexity in the definition of granular
ocation attributes, which overcomes dimensionality problems, (2) the
election of the best gravity-based accessibility indices through an
utomated process, and (3) the use of principal components analysis to
chieve orthogonality prior to their inclusion in the HPM. Regarding
he dimensionality issue at the geographical level, the use of a discrete
patial mesh makes the algorithm highly efficient at the computational
evel and thus suitable for processes involving a great volume of price
aluations in real time. Regarding the selection of the best accessibility
ndices, our algorithms choose the best gravitational specifications (in
erms of decay patterns 𝛽𝑚) and, afterwards, the best-of-breed selection
f the orthogonal (or boosted) accessibility indices. Key for the better
erformance of regression methods is that the optimal indices are
ncorrelated with the residuals of an OLS model excluding spatial
ttributes. What makes this method relevant is that it can be applied to
16

ny type of real state (residential, commercial, industrial, raw land, and
special use) and scalable to any geographical dimension (municipal,
regional, national, etc.).

Future research will be focused on several questions, first the use
of other multivariate statistical methods besides principal components
analysis to generate the optimal accessibility indices. Secondly, the
possibility of evolving the univariate heuristic selection model to take
into consideration the interaction among variables. Thirdly, bring other
established machine learning techniques to the comparison (e.g., boost-
ing, neural networks, . . . ). Finally, to study the application of orthog-
onal accessibility indices to spatial regression models, as we have the
insight that the use of this new set of variables, combined with spatial
econometrics (e.g., geographically weighted regressions), may result in
even better performance (Wonseok & Nam, 2019).
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