Code
utils::install.packages("cluster")
utils::install.packages("factoextra")
utils::install.packages("gridExtra")
utils::install.packages("biscale")
utils::install.packages("cowplot")
`
Over the past three weeks we have had the opportunity to explore reproducible data project management strategies and analyze the patterns of social vulnerability in our Census Divisions. Specifically, we have identified the least and most vulnerable areas within our states of interest via descriptive statistics and data visualization techniques.
This week we will expand beyond this analysis to embark on a study of the relationship between our identified areas of social vulnerability and the governmental policy interventions of two tax credit programs: the New Markets Tax Credit program (NMTC), and the Low Income Housing Tax Credit program (LIHTC).
To begin, we will review videos and program summaries to gain a better understanding of the history and purpose of these credits and then conduct exploratory data analyses to determine whether there is a relationship between our identified areas of Social Vulnerability in 2010 and the amount of funds these areas received if they were eligible for either of the programs from 2011 - 2020.
We will employ a few different strategies to complete this analysis:
For correlation, we will create and examine scatterplots to visualize whether our data shows a visual trend between SVI and the tax credit programs. We will also use box plots to further examine any potential outliers or influential points within our data.
Next we will calculate and interpret the Pearson Correlation Coefficient (r) to better quantify this relationship. While there is no official chart with cut-off points to determine the strength of a relationship, there are some general guidelines such as the following chart from Boston University School of Public Health, which we will utilize to interpret our analyses:
Following our analysis of the correlation of all counties in our division, we will then utilize an unsupervised statistical/machine learning algorithm and its accompanying Elbow Plot to create groups/clusters within our data set that are closely related. We can then examine each of these clusters individually to see if any trends change.
Finally we will report our findings on both our SVI and tax credit programs on a specialized choropleth map known as a bivariate map.
History: Created in 2000, authorized by Congress under the Community Renewal and Tax Relief Act of 2000, most recently, the Taxpayer Certainty and Disaster Tax Relief Act of 2020 provided $5 billion in NMTC Allocation authority for calendar years through 2025 (CDFI Fund, 2022). There were bills introduced in 2023 to make the NMTC program permanent (Novogradac, 2023).
Recipients: NMTCs are awarded to Community Development Entities, not to individuals or businesses. (CDFI Fund, 2022)
Purpose: make Qualified Low-Income Community Investments (QLICIs), such as business loans, in Low-Income Communities (CDFI Fund, 2022)
The NMTC program provides tax credit dollars to Community Development Entities with the intention of improving low income communities by encouraging developers to build new projects within the community that can create new jobs and provide additional services.
Eligibility criteria for the NMTC program is quite extensive:
Sites located in non-metropolitan (i.e., rural) census tracts must meet the following criteria:
Sites located in metropolitan areas must meet one of the primary criteria listed below or two of the secondary criteria listed below:
Primary criteria for sites located in metropolitan areas include:
Secondary criteria for sites located in metropolitan areas include:
Sites located in non-metropolitan (i.e., rural) census tracts must meet the following criteria:
Sites located in metropolitan areas must meet one of the primary criteria listed below or two of the secondary criteria listed below:
Primary criteria for sites located in metropolitan areas include:
Secondary criteria for sites located in metropolitan areas include:
Watch the following video for a comprehensive overview:
History: Created in 1986, authorized by Congress under the Tax Reform Act of 1986, most recent legislation to impact the LIHTC program was the Inflation Reduction Act of 2022 which increased credits/bonuses (Urban Institute, 2018; Congressional Research Service, 2023)
Recipients: Private investors (Urban Institute, 2018)
Purpose: It is “an incentive to make equity investments in affordable rental housing. The equity raised is used to construct new properties, acquire and renovate existing buildings, and refinance and renovate existing affordable rental housing properties that have previously been financed through other federal housing programs” (Urban Institute, 2018)
The LIHTC program provides tax credit dollars to private investors with the intention of increasing affordable rental housing facilities within communities.
For the LIHTC program census tracts must be deemed eligible based on one of the following criteria:
You will recall from your previous statistical and analytics courses that “correlation” refers to the statistical relationship between two variables. A positive relationship refers to two variables that trend in the same direction (example: the increasing height and weight of a puppy as he grows). While a negative relationship refers to two variables that trend in opposite directions (example: the more people who need to share a cake, the smaller the pieces will be).
Watch the video below for a more in-depth review:
Landman et al. of Brilliant.org define K-Means Clustering in the following way:
K-means clustering is a traditional, simple machine learning algorithm that is trained on a test data set and then able to classify a new data set using a prime, k number of clusters defined a priori.
Statistician Jim Frost further explains:
The K means clustering algorithm divides a set of n observations into k clusters. … In general, clustering is a method of assigning comparable data points to groups using data patterns. Clustering algorithms find similar data points and allocate them to the same set. K means clustering is one such algorithm.
Review the following video to see this machine learning technique in action:
As explained on the Water Programming Blog of the Reed Research Group on Decision Analytics for Complex Systems at Cornell University:
Choropleth maps are a ubiquitous tool in geospatial analysis where color is used to visualize the spatial variability of data (e.g., coloring counties based on temperature, GDP, or election results). Bivariate choropleth maps are a less common variant that use 2-dimensional color palettes to show two different types of data at once. This can be a powerful tool for visualizing spatial correlations and clustering patterns between two related variables.
Thus we can build upon the univariate choropleth maps we explored last week to examine our correlations on a bivariate map using the R package biscale by Chris Prener
If you would like to learn more about this mapping technique ahead of creating our own maps in the lab this week, check out the following video:
If you would like to explore the topics introduced above further, feel free to review the following readings and then begin this week’s lab:
Readings on NMTC and LIHTC Programs:
Readings on Correlation and Outliers:
Readings on K-Means Clustering:
Readings on Bivariate Mapping and the biscale and cowplot Packages:
To begin, we will need to install a few new packages and load some packages that we’ve previously installed:
utils::install.packages("cluster")
utils::install.packages("factoextra")
utils::install.packages("gridExtra")
utils::install.packages("biscale")
utils::install.packages("cowplot")
# Turn off scientific notation
options(scipen=999)
# Load packages
library(here) # relative file paths for reproducibility
library(tidyverse) # data wrangling
library(stringi) # string data wrangling
library(tigris) # US census TIGER/Line shapefiles
library(ggplot2) # data visualization
library(cowplot) # data visualization plotting
library(gridExtra) # grid for data visualizations
library(biscale) # bivariate mapping
library(kableExtra) # table formatting
library(scales) # palette and number formatting
library(cluster) # clustering algorithms
library(factoextra) # clustering algorithms & visualization
Next we need to import our functions and constants from our project_data_steps.R file. Remember, your file should have your initials at the end to avoid confusion with your teammates. For example, in a shared repo my file name would be project_data_steps_CS.R
Recall that we should use the here::here()
function for relative file paths. We also can use double colons ::
to indicate both the specific library and function name we want to use to avoid any overriding.
import::here( "fips_census_regions",
"load_svi_data",
"merge_svi_data",
"census_division",
"flag_summarize",
# notice the use of here::here() that points to the .R file
# where all these R objects are created
.from = here::here("analysis/project_data_steps.R"),
.character_only = TRUE)
census_division
Next, recall that we can load up our data sets and process them with our functions to create data sets on a national and divisional level for 2010 and 2020.
Note that we will want to flag our SVI indicators at or above the 75th percentile. For the divisional data we will also want to utilize the rank_by and location parameters to limit to our division of interest.
# Load SVI data sets
svi_2010 <- readRDS(here::here("data/raw/Census_Data_SVI/svi_2010_trt10.rds"))
svi_2020 <- readRDS(here::here("data/raw/Census_Data_SVI/svi_2020_trt10.rds"))
# Load mapping data sets
svi_county_map2010 <- readRDS(here::here(paste0("data/wrangling/", str_replace_all(census_division, " ", "_"), "_county_svi_flags10.rds")))
svi_county_map2020 <- readRDS(here::here(paste0("data/wrangling/", str_replace_all(census_division, " ", "_"), "_county_svi_flags20.rds")))
divisional_st_sf <- readRDS(here::here(paste0("data/wrangling/", str_replace_all(census_division, " ", "_"), "_st_sf.rds")))
# Load NMTC & LIHTC Tract Eligibility Data
orig_nmtc <- readxl::read_excel(here::here("data/raw/NMTC_LIHTC_tracts/nmtc_2011-2015_lic_110217.xlsx"), sheet="NMTC LICs 2011-2015 ACS")
high_migration_nmtc <- readxl::read_excel(here::here("data/raw/NMTC_LIHTC_tracts/nmtc_2011-2015_lic_110217.xlsx"), sheet="High migration tracts", skip=1)
nmtc_awards_data <- readxl::read_excel(here::here("data/raw/NMTC_LIHTC_tracts/NMTC_Public_Data_Release_includes_FY_2021_Data_final.xlsx"), sheet = "Projects 2 - Data Set PUBLISH.P")
lihtc_eligible <- readxl::read_excel(here::here("data/raw/NMTC_LIHTC_tracts/qct_data_2010_2011_2012.xlsx"))
lihtc_projects <- read.csv(here::here("data/raw/NMTC_LIHTC_tracts/lihtcpub/LIHTCPUB.csv"))
# National 2010 Data
svi_2010_national <- load_svi_data(svi_2010, percentile=.75)
svi_2010_national %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt | FIPS_st | FIPS_county | FIPS_tract | state | state_name | county | region_number | region | division_number | division | E_TOTPOP_10 | E_HU_10 | E_HH_10 | E_POV150_10 | ET_POVSTATUS_10 | EP_POV150_10 | EPL_POV150_10 | F_POV150_10 | E_UNEMP_10 | ET_EMPSTATUS_10 | EP_UNEMP_10 | EPL_UNEMP_10 | F_UNEMP_10 | E_HBURD_OWN_10 | ET_HOUSINGCOST_OWN_10 | EP_HBURD_OWN_10 | EPL_HBURD_OWN_10 | F_HBURD_OWN_10 | E_HBURD_RENT_10 | ET_HOUSINGCOST_RENT_10 | EP_HBURD_RENT_10 | EPL_HBURD_RENT_10 | F_HBURD_RENT_10 | E_HBURD_10 | ET_HOUSINGCOST_10 | EP_HBURD_10 | EPL_HBURD_10 | F_HBURD_10 | E_NOHSDP_10 | ET_EDSTATUS_10 | EP_NOHSDP_10 | EPL_NOHSDP_10 | F_NOHSDP_10 | E_UNINSUR_12 | ET_INSURSTATUS_12 | EP_UNINSUR_12 | EPL_UNINSUR_12 | F_UNINSUR_12 | E_AGE65_10 | EP_AGE65_10 | EPL_AGE65_10 | F_AGE65_10 | E_AGE17_10 | EP_AGE17_10 | EPL_AGE17_10 | F_AGE17_10 | E_DISABL_12 | ET_DISABLSTATUS_12 | EP_DISABL_12 | EPL_DISABL_12 | F_DISABL_12 | E_SNGPNT_10 | ET_FAMILIES_10 | EP_SNGPNT_10 | EPL_SNGPNT_10 | F_SNGPNT_10 | E_LIMENG_10 | ET_POPAGE5UP_10 | EP_LIMENG_10 | EPL_LIMENG_10 | F_LIMENG_10 | E_MINRTY_10 | ET_POPETHRACE_10 | EP_MINRTY_10 | EPL_MINRTY_10 | F_MINRTY_10 | E_STRHU_10 | E_MUNIT_10 | EP_MUNIT_10 | EPL_MUNIT_10 | F_MUNIT_10 | E_MOBILE_10 | EP_MOBILE_10 | EPL_MOBILE_10 | F_MOBILE_10 | E_CROWD_10 | ET_OCCUPANTS_10 | EP_CROWD_10 | EPL_CROWD_10 | F_CROWD_10 | E_NOVEH_10 | ET_KNOWNVEH_10 | EP_NOVEH_10 | EPL_NOVEH_10 | F_NOVEH_10 | E_GROUPQ_10 | ET_HHTYPE_10 | EP_GROUPQ_10 | EPL_GROUPQ_10 | F_GROUPQ_10 | SPL_THEME1 | RPL_THEME1 | F_THEME1 | SPL_THEME2 | RPL_THEME2 | F_THEME2 | SPL_THEME3 | RPL_THEME3 | F_THEME3 | SPL_THEME4 | RPL_THEME4 | F_THEME4 | SPL_THEMES | RPL_THEMES | F_TOTAL |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
01001020100 | 01 | 001 | 020100 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 1809 | 771 | 696 | 297 | 1809 | 16.41791 | 0.3871 | 0 | 36 | 889 | 4.049494 | 0.1790 | 0 | 127 | 598 | 21.23746 | 0.20770 | 0 | 47 | 98 | 47.95918 | 0.5767 | 0 | 174 | 696 | 25.00000 | 0.18790 | 0 | 196 | 1242 | 15.780998 | 0.6093 | 0 | 186 | 1759 | 10.574190 | 0.3790 | 0 | 222 | 12.271973 | 0.4876 | 0 | 445 | 24.59923 | 0.5473 | 0 | 298 | 1335 | 22.32210 | 0.8454 | 1 | 27 | 545 | 4.954128 | 0.09275 | 0 | 36 | 1705 | 2.1114370 | 0.59040 | 0 | 385 | 1809 | 21.282477 | 0.4524 | 0 | 771 | 0 | 0.0000000 | 0.1224 | 0 | 92 | 11.9325551 | 0.8005 | 1 | 0 | 696 | 0.0000000 | 0.1238 | 0 | 50 | 696 | 7.183908 | 0.6134 | 0 | 0 | 1809 | 0 | 0.364 | 0 | 1.74230 | 0.28200 | 0 | 2.56345 | 0.5296 | 1 | 0.4524 | 0.4482 | 0 | 2.0241 | 0.2519 | 1 | 6.78225 | 0.3278 | 2 |
01001020200 | 01 | 001 | 020200 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 2020 | 816 | 730 | 495 | 1992 | 24.84940 | 0.5954 | 0 | 68 | 834 | 8.153477 | 0.5754 | 0 | 49 | 439 | 11.16173 | 0.02067 | 0 | 105 | 291 | 36.08247 | 0.3019 | 0 | 154 | 730 | 21.09589 | 0.09312 | 0 | 339 | 1265 | 26.798419 | 0.8392 | 1 | 313 | 2012 | 15.556660 | 0.6000 | 0 | 204 | 10.099010 | 0.3419 | 0 | 597 | 29.55446 | 0.8192 | 1 | 359 | 1515 | 23.69637 | 0.8791 | 1 | 132 | 456 | 28.947368 | 0.83510 | 1 | 15 | 1890 | 0.7936508 | 0.40130 | 0 | 1243 | 2020 | 61.534653 | 0.7781 | 1 | 816 | 0 | 0.0000000 | 0.1224 | 0 | 34 | 4.1666667 | 0.6664 | 0 | 13 | 730 | 1.7808219 | 0.5406 | 0 | 115 | 730 | 15.753425 | 0.8382 | 1 | 0 | 2020 | 0 | 0.364 | 0 | 2.70312 | 0.56650 | 1 | 3.27660 | 0.8614 | 3 | 0.7781 | 0.7709 | 1 | 2.5316 | 0.5047 | 1 | 9.28942 | 0.6832 | 6 |
01001020300 | 01 | 001 | 020300 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 3543 | 1403 | 1287 | 656 | 3533 | 18.56779 | 0.4443 | 0 | 93 | 1552 | 5.992268 | 0.3724 | 0 | 273 | 957 | 28.52665 | 0.45780 | 0 | 178 | 330 | 53.93939 | 0.7152 | 0 | 451 | 1287 | 35.04274 | 0.49930 | 0 | 346 | 2260 | 15.309734 | 0.5950 | 0 | 252 | 3102 | 8.123791 | 0.2596 | 0 | 487 | 13.745413 | 0.5868 | 0 | 998 | 28.16822 | 0.7606 | 1 | 371 | 2224 | 16.68165 | 0.6266 | 0 | 126 | 913 | 13.800657 | 0.46350 | 0 | 0 | 3365 | 0.0000000 | 0.09298 | 0 | 637 | 3543 | 17.979114 | 0.4049 | 0 | 1403 | 10 | 0.7127584 | 0.3015 | 0 | 2 | 0.1425517 | 0.4407 | 0 | 0 | 1287 | 0.0000000 | 0.1238 | 0 | 101 | 1287 | 7.847708 | 0.6443 | 0 | 0 | 3543 | 0 | 0.364 | 0 | 2.17060 | 0.41010 | 0 | 2.53048 | 0.5116 | 1 | 0.4049 | 0.4011 | 0 | 1.8743 | 0.1942 | 0 | 6.98028 | 0.3576 | 1 |
01001020400 | 01 | 001 | 020400 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 4840 | 1957 | 1839 | 501 | 4840 | 10.35124 | 0.2177 | 0 | 101 | 2129 | 4.744011 | 0.2447 | 0 | 310 | 1549 | 20.01291 | 0.17080 | 0 | 89 | 290 | 30.68966 | 0.2044 | 0 | 399 | 1839 | 21.69657 | 0.10540 | 0 | 274 | 3280 | 8.353658 | 0.3205 | 0 | 399 | 4293 | 9.294200 | 0.3171 | 0 | 955 | 19.731405 | 0.8643 | 1 | 1195 | 24.69008 | 0.5530 | 0 | 625 | 3328 | 18.78005 | 0.7233 | 0 | 152 | 1374 | 11.062591 | 0.34710 | 0 | 10 | 4537 | 0.2204100 | 0.22560 | 0 | 297 | 4840 | 6.136364 | 0.1647 | 0 | 1957 | 33 | 1.6862545 | 0.3843 | 0 | 25 | 1.2774655 | 0.5516 | 0 | 14 | 1839 | 0.7612833 | 0.3564 | 0 | 19 | 1839 | 1.033170 | 0.1127 | 0 | 0 | 4840 | 0 | 0.364 | 0 | 1.20540 | 0.13470 | 0 | 2.71330 | 0.6129 | 1 | 0.1647 | 0.1632 | 0 | 1.7690 | 0.1591 | 0 | 5.85240 | 0.1954 | 1 |
01001020500 | 01 | 001 | 020500 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 9938 | 3969 | 3741 | 1096 | 9938 | 11.02838 | 0.2364 | 0 | 188 | 4937 | 3.807981 | 0.1577 | 0 | 426 | 2406 | 17.70574 | 0.11050 | 0 | 528 | 1335 | 39.55056 | 0.3753 | 0 | 954 | 3741 | 25.50120 | 0.20140 | 0 | 293 | 5983 | 4.897209 | 0.1655 | 0 | 740 | 10110 | 7.319486 | 0.2211 | 0 | 837 | 8.422218 | 0.2408 | 0 | 3012 | 30.30791 | 0.8455 | 1 | 759 | 7155 | 10.60797 | 0.2668 | 0 | 476 | 2529 | 18.821669 | 0.63540 | 0 | 78 | 9297 | 0.8389803 | 0.41110 | 0 | 1970 | 9938 | 19.822902 | 0.4330 | 0 | 3969 | 306 | 7.7097506 | 0.6153 | 0 | 0 | 0.0000000 | 0.2198 | 0 | 7 | 3741 | 0.1871157 | 0.2535 | 0 | 223 | 3741 | 5.960973 | 0.5483 | 0 | 0 | 9938 | 0 | 0.364 | 0 | 0.98210 | 0.08468 | 0 | 2.39960 | 0.4381 | 1 | 0.4330 | 0.4290 | 0 | 2.0009 | 0.2430 | 0 | 5.81560 | 0.1905 | 1 |
01001020600 | 01 | 001 | 020600 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 3402 | 1456 | 1308 | 735 | 3402 | 21.60494 | 0.5199 | 0 | 134 | 1720 | 7.790698 | 0.5436 | 0 | 242 | 1032 | 23.44961 | 0.28010 | 0 | 62 | 276 | 22.46377 | 0.1035 | 0 | 304 | 1308 | 23.24159 | 0.14070 | 0 | 301 | 2151 | 13.993491 | 0.5510 | 0 | 355 | 3445 | 10.304790 | 0.3656 | 0 | 386 | 11.346267 | 0.4232 | 0 | 931 | 27.36626 | 0.7200 | 0 | 440 | 2439 | 18.04018 | 0.6912 | 0 | 143 | 924 | 15.476190 | 0.52900 | 0 | 4 | 3254 | 0.1229256 | 0.19840 | 0 | 723 | 3402 | 21.252205 | 0.4519 | 0 | 1456 | 18 | 1.2362637 | 0.3507 | 0 | 433 | 29.7390110 | 0.9468 | 1 | 16 | 1308 | 1.2232416 | 0.4493 | 0 | 28 | 1308 | 2.140673 | 0.2298 | 0 | 0 | 3402 | 0 | 0.364 | 0 | 2.12080 | 0.39510 | 0 | 2.56180 | 0.5288 | 0 | 0.4519 | 0.4477 | 0 | 2.3406 | 0.4048 | 1 | 7.47510 | 0.4314 | 1 |
# Divisional 2010 Data
svi_2010_divisional <- load_svi_data(svi_2010, rank_by = "divisional", location = census_division, percentile=.75)
svi_2010_divisional %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt | FIPS_st | FIPS_county | FIPS_tract | state | state_name | county | region_number | region | division_number | division | E_TOTPOP_10 | E_HU_10 | E_HH_10 | E_POV150_10 | ET_POVSTATUS_10 | EP_POV150_10 | EPL_POV150_10 | F_POV150_10 | E_UNEMP_10 | ET_EMPSTATUS_10 | EP_UNEMP_10 | EPL_UNEMP_10 | F_UNEMP_10 | E_HBURD_OWN_10 | ET_HOUSINGCOST_OWN_10 | EP_HBURD_OWN_10 | EPL_HBURD_OWN_10 | F_HBURD_OWN_10 | E_HBURD_RENT_10 | ET_HOUSINGCOST_RENT_10 | EP_HBURD_RENT_10 | EPL_HBURD_RENT_10 | F_HBURD_RENT_10 | E_HBURD_10 | ET_HOUSINGCOST_10 | EP_HBURD_10 | EPL_HBURD_10 | F_HBURD_10 | E_NOHSDP_10 | ET_EDSTATUS_10 | EP_NOHSDP_10 | EPL_NOHSDP_10 | F_NOHSDP_10 | E_UNINSUR_12 | ET_INSURSTATUS_12 | EP_UNINSUR_12 | EPL_UNINSUR_12 | F_UNINSUR_12 | E_AGE65_10 | EP_AGE65_10 | EPL_AGE65_10 | F_AGE65_10 | E_AGE17_10 | EP_AGE17_10 | EPL_AGE17_10 | F_AGE17_10 | E_DISABL_12 | ET_DISABLSTATUS_12 | EP_DISABL_12 | EPL_DISABL_12 | F_DISABL_12 | E_SNGPNT_10 | ET_FAMILIES_10 | EP_SNGPNT_10 | EPL_SNGPNT_10 | F_SNGPNT_10 | E_LIMENG_10 | ET_POPAGE5UP_10 | EP_LIMENG_10 | EPL_LIMENG_10 | F_LIMENG_10 | E_MINRTY_10 | ET_POPETHRACE_10 | EP_MINRTY_10 | EPL_MINRTY_10 | F_MINRTY_10 | E_STRHU_10 | E_MUNIT_10 | EP_MUNIT_10 | EPL_MUNIT_10 | F_MUNIT_10 | E_MOBILE_10 | EP_MOBILE_10 | EPL_MOBILE_10 | F_MOBILE_10 | E_CROWD_10 | ET_OCCUPANTS_10 | EP_CROWD_10 | EPL_CROWD_10 | F_CROWD_10 | E_NOVEH_10 | ET_KNOWNVEH_10 | EP_NOVEH_10 | EPL_NOVEH_10 | F_NOVEH_10 | E_GROUPQ_10 | ET_HHTYPE_10 | EP_GROUPQ_10 | EPL_GROUPQ_10 | F_GROUPQ_10 | SPL_THEME1 | RPL_THEME1 | F_THEME1 | SPL_THEME2 | RPL_THEME2 | F_THEME2 | SPL_THEME3 | RPL_THEME3 | F_THEME3 | SPL_THEME4 | RPL_THEME4 | F_THEME4 | SPL_THEMES | RPL_THEMES | F_TOTAL |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
34001000100 | 34 | 001 | 000100 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 2907 | 1088 | 983 | 1127 | 2907 | 38.76849 | 0.8482 | 1 | 144 | 1433 | 10.048849 | 0.7544 | 1 | 280 | 435 | 64.36782 | 0.9529 | 1 | 204 | 548 | 37.22628 | 0.2998 | 0 | 484 | 983 | 49.23703 | 0.7813 | 1 | 468 | 1759 | 26.60603 | 0.8634 | 1 | 532 | 2543 | 20.92017 | 0.8978 | 1 | 250 | 8.599931 | 0.1777 | 0 | 944 | 32.47334 | 0.94170 | 1 | 186 | 1851 | 10.04862 | 0.2706 | 0 | 266 | 678 | 39.233038 | 0.8981 | 1 | 177 | 2611 | 6.779012 | 0.7778 | 1 | 1928 | 2907 | 66.32267 | 0.7743 | 1 | 1088 | 113 | 10.386029 | 0.6229 | 0 | 9 | 0.8272059 | 0.7223 | 0 | 80 | 983 | 8.138352 | 0.8657 | 1 | 265 | 983 | 26.95829 | 0.7354 | 0 | 0 | 2907 | 0.000000 | 0.3512 | 0 | 4.1451 | 0.8935 | 5 | 3.06590 | 0.7944 | 3 | 0.7743 | 0.7667 | 1 | 3.2975 | 0.8414 | 1 | 11.28280 | 0.8862 | 10 |
34001000200 | 34 | 001 | 000200 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 3189 | 2217 | 1473 | 519 | 3189 | 16.27469 | 0.4806 | 0 | 109 | 1558 | 6.996149 | 0.5179 | 0 | 573 | 955 | 60.00000 | 0.9323 | 1 | 199 | 518 | 38.41699 | 0.3261 | 0 | 772 | 1473 | 52.41005 | 0.8418 | 1 | 405 | 2579 | 15.70376 | 0.6491 | 0 | 484 | 3547 | 13.64533 | 0.7154 | 0 | 847 | 26.560050 | 0.9629 | 1 | 436 | 13.67200 | 0.08181 | 0 | 608 | 3005 | 20.23295 | 0.8466 | 1 | 42 | 857 | 4.900817 | 0.1204 | 0 | 422 | 3072 | 13.736979 | 0.8799 | 1 | 1792 | 3189 | 56.19316 | 0.7390 | 0 | 2217 | 901 | 40.640505 | 0.8693 | 1 | 0 | 0.0000000 | 0.3251 | 0 | 48 | 1473 | 3.258656 | 0.7064 | 0 | 250 | 1473 | 16.97217 | 0.6444 | 0 | 0 | 3189 | 0.000000 | 0.3512 | 0 | 3.2048 | 0.6963 | 1 | 2.89161 | 0.7231 | 3 | 0.7390 | 0.7317 | 0 | 2.8964 | 0.6887 | 1 | 9.73181 | 0.7340 | 5 |
34001000300 | 34 | 001 | 000300 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 3997 | 1823 | 1357 | 1401 | 3968 | 35.30746 | 0.8164 | 1 | 382 | 2238 | 17.068811 | 0.9376 | 1 | 176 | 329 | 53.49544 | 0.8855 | 1 | 604 | 1028 | 58.75486 | 0.7947 | 1 | 780 | 1357 | 57.47973 | 0.9165 | 1 | 920 | 2677 | 34.36683 | 0.9346 | 1 | 1351 | 4149 | 32.56206 | 0.9811 | 1 | 314 | 7.855892 | 0.1437 | 0 | 937 | 23.44258 | 0.55900 | 0 | 319 | 3054 | 10.44532 | 0.3000 | 0 | 187 | 782 | 23.913044 | 0.7498 | 0 | 1080 | 3671 | 29.419777 | 0.9742 | 1 | 3357 | 3997 | 83.98799 | 0.8419 | 1 | 1823 | 363 | 19.912233 | 0.7535 | 1 | 0 | 0.0000000 | 0.3251 | 0 | 150 | 1357 | 11.053795 | 0.9136 | 1 | 651 | 1357 | 47.97347 | 0.8585 | 1 | 0 | 3997 | 0.000000 | 0.3512 | 0 | 4.5862 | 0.9691 | 5 | 2.72670 | 0.6360 | 1 | 0.8419 | 0.8336 | 1 | 3.2019 | 0.8054 | 3 | 11.35670 | 0.8920 | 10 |
34001000400 | 34 | 001 | 000400 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 2902 | 2683 | 1401 | 1172 | 2902 | 40.38594 | 0.8615 | 1 | 190 | 1389 | 13.678906 | 0.8811 | 1 | 364 | 707 | 51.48515 | 0.8627 | 1 | 507 | 694 | 73.05476 | 0.9503 | 1 | 871 | 1401 | 62.16988 | 0.9572 | 1 | 481 | 1981 | 24.28067 | 0.8339 | 1 | 674 | 3204 | 21.03620 | 0.8998 | 1 | 434 | 14.955203 | 0.6083 | 0 | 596 | 20.53756 | 0.33980 | 0 | 426 | 2607 | 16.34062 | 0.6886 | 0 | 111 | 652 | 17.024540 | 0.6204 | 0 | 215 | 2736 | 7.858187 | 0.8008 | 1 | 1792 | 2902 | 61.75052 | 0.7584 | 1 | 2683 | 2049 | 76.369735 | 0.9401 | 1 | 0 | 0.0000000 | 0.3251 | 0 | 69 | 1401 | 4.925053 | 0.7847 | 1 | 511 | 1401 | 36.47395 | 0.7992 | 1 | 72 | 2902 | 2.481048 | 0.8114 | 1 | 4.4335 | 0.9468 | 5 | 3.05790 | 0.7908 | 1 | 0.7584 | 0.7510 | 1 | 3.6605 | 0.9391 | 4 | 11.91030 | 0.9339 | 11 |
34001000500 | 34 | 001 | 000500 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 3483 | 1241 | 1027 | 1938 | 3483 | 55.64169 | 0.9533 | 1 | 124 | 1630 | 7.607362 | 0.5830 | 0 | 227 | 446 | 50.89686 | 0.8549 | 1 | 478 | 581 | 82.27194 | 0.9799 | 1 | 705 | 1027 | 68.64654 | 0.9863 | 1 | 733 | 2077 | 35.29129 | 0.9396 | 1 | 727 | 3258 | 22.31430 | 0.9149 | 1 | 377 | 10.824002 | 0.3081 | 0 | 1055 | 30.28998 | 0.90140 | 1 | 268 | 2401 | 11.16202 | 0.3549 | 0 | 209 | 763 | 27.391874 | 0.7940 | 1 | 911 | 3077 | 29.606760 | 0.9746 | 1 | 3036 | 3483 | 87.16624 | 0.8550 | 1 | 1241 | 52 | 4.190169 | 0.4505 | 0 | 4 | 0.3223207 | 0.6567 | 0 | 113 | 1027 | 11.002921 | 0.9128 | 1 | 422 | 1027 | 41.09056 | 0.8250 | 1 | 0 | 3483 | 0.000000 | 0.3512 | 0 | 4.3771 | 0.9379 | 4 | 3.33300 | 0.8766 | 3 | 0.8550 | 0.8467 | 1 | 3.1962 | 0.8026 | 2 | 11.76130 | 0.9229 | 10 |
34001001100 | 34 | 001 | 001100 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 2204 | 1204 | 1204 | 1185 | 2204 | 53.76588 | 0.9457 | 1 | 219 | 927 | 23.624596 | 0.9830 | 1 | 97 | 172 | 56.39535 | 0.9094 | 1 | 462 | 1032 | 44.76744 | 0.4746 | 0 | 559 | 1204 | 46.42857 | 0.7197 | 0 | 346 | 1440 | 24.02778 | 0.8306 | 1 | 469 | 1942 | 24.15036 | 0.9360 | 1 | 363 | 16.470054 | 0.7020 | 0 | 578 | 26.22505 | 0.74410 | 0 | 442 | 1558 | 28.36970 | 0.9675 | 1 | 247 | 396 | 62.373737 | 0.9898 | 1 | 104 | 2051 | 5.070697 | 0.7260 | 0 | 2118 | 2204 | 96.09800 | 0.9204 | 1 | 1204 | 570 | 47.342193 | 0.8858 | 1 | 0 | 0.0000000 | 0.3251 | 0 | 14 | 1204 | 1.162791 | 0.4877 | 0 | 817 | 1204 | 67.85714 | 0.9413 | 1 | 0 | 2204 | 0.000000 | 0.3512 | 0 | 4.4150 | 0.9451 | 4 | 4.12940 | 0.9805 | 2 | 0.9204 | 0.9114 | 1 | 2.9911 | 0.7243 | 2 | 12.45590 | 0.9597 | 9 |
# National 2020 Data
svi_2020_national <- load_svi_data(svi_2020, percentile=.75)
svi_2020_national %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt | FIPS_st | FIPS_county | FIPS_tract | state | state_name | county | region_number | region | division_number | division | E_TOTPOP_20 | E_HU_20 | E_HH_20 | E_POV150_20 | ET_POVSTATUS_20 | EP_POV150_20 | EPL_POV150_20 | F_POV150_20 | E_UNEMP_20 | ET_EMPSTATUS_20 | EP_UNEMP_20 | EPL_UNEMP_20 | F_UNEMP_20 | E_HBURD_OWN_20 | ET_HOUSINGCOST_OWN_20 | EP_HBURD_OWN_20 | EPL_HBURD_OWN_20 | F_HBURD_OWN_20 | E_HBURD_RENT_20 | ET_HOUSINGCOST_RENT_20 | EP_HBURD_RENT_20 | EPL_HBURD_RENT_20 | F_HBURD_RENT_20 | E_HBURD_20 | ET_HOUSINGCOST_20 | EP_HBURD_20 | EPL_HBURD_20 | F_HBURD_20 | E_NOHSDP_20 | ET_EDSTATUS_20 | EP_NOHSDP_20 | EPL_NOHSDP_20 | F_NOHSDP_20 | E_UNINSUR_20 | ET_INSURSTATUS_20 | EP_UNINSUR_20 | EPL_UNINSUR_20 | F_UNINSUR_20 | E_AGE65_20 | EP_AGE65_20 | EPL_AGE65_20 | F_AGE65_20 | E_AGE17_20 | EP_AGE17_20 | EPL_AGE17_20 | F_AGE17_20 | E_DISABL_20 | ET_DISABLSTATUS_20 | EP_DISABL_20 | EPL_DISABL_20 | F_DISABL_20 | E_SNGPNT_20 | ET_FAMILIES_20 | EP_SNGPNT_20 | EPL_SNGPNT_20 | F_SNGPNT_20 | E_LIMENG_20 | ET_POPAGE5UP_20 | EP_LIMENG_20 | EPL_LIMENG_20 | F_LIMENG_20 | E_MINRTY_20 | ET_POPETHRACE_20 | EP_MINRTY_20 | EPL_MINRTY_20 | F_MINRTY_20 | E_STRHU_20 | E_MUNIT_20 | EP_MUNIT_20 | EPL_MUNIT_20 | F_MUNIT_20 | E_MOBILE_20 | EP_MOBILE_20 | EPL_MOBILE_20 | F_MOBILE_20 | E_CROWD_20 | ET_OCCUPANTS_20 | EP_CROWD_20 | EPL_CROWD_20 | F_CROWD_20 | E_NOVEH_20 | ET_KNOWNVEH_20 | EP_NOVEH_20 | EPL_NOVEH_20 | F_NOVEH_20 | E_GROUPQ_20 | ET_HHTYPE_20 | EP_GROUPQ_20 | EPL_GROUPQ_20 | F_GROUPQ_20 | SPL_THEME1 | RPL_THEME1 | F_THEME1 | SPL_THEME2 | RPL_THEME2 | F_THEME2 | SPL_THEME3 | RPL_THEME3 | F_THEME3 | SPL_THEME4 | RPL_THEME4 | F_THEME4 | SPL_THEMES | RPL_THEMES | F_TOTAL |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
01001020100 | 01 | 001 | 020100 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 1941 | 710 | 693 | 352 | 1941 | 18.13498 | 0.4630 | 0 | 18 | 852 | 2.112676 | 0.15070 | 0 | 81 | 507 | 15.976331 | 0.26320 | 0 | 63 | 186 | 33.87097 | 0.2913 | 0 | 144 | 693 | 20.77922 | 0.2230 | 0 | 187 | 1309 | 14.285714 | 0.6928 | 0 | 187 | 1941 | 9.634209 | 0.6617 | 0 | 295 | 15.19835 | 0.4601 | 0 | 415 | 21.38073 | 0.4681 | 0 | 391 | 1526 | 25.62254 | 0.9011 | 1 | 58 | 555 | 10.45045 | 0.3451 | 0 | 0 | 1843 | 0.0000000 | 0.09479 | 0 | 437 | 1941 | 22.51417 | 0.3902 | 0 | 710 | 0 | 0.0000000 | 0.1079 | 0 | 88 | 12.3943662 | 0.8263 | 1 | 0 | 693 | 0.0000000 | 0.09796 | 0 | 10 | 693 | 1.443001 | 0.1643 | 0 | 0 | 1941 | 0.000000 | 0.1831 | 0 | 2.19120 | 0.4084 | 0 | 2.26919 | 0.3503 | 1 | 0.3902 | 0.3869 | 0 | 1.37956 | 0.07216 | 1 | 6.23015 | 0.2314 | 2 |
01001020200 | 01 | 001 | 020200 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 1757 | 720 | 573 | 384 | 1511 | 25.41363 | 0.6427 | 0 | 29 | 717 | 4.044630 | 0.41320 | 0 | 33 | 392 | 8.418367 | 0.03542 | 0 | 116 | 181 | 64.08840 | 0.9086 | 1 | 149 | 573 | 26.00349 | 0.4041 | 0 | 139 | 1313 | 10.586443 | 0.5601 | 0 | 91 | 1533 | 5.936073 | 0.4343 | 0 | 284 | 16.16392 | 0.5169 | 0 | 325 | 18.49744 | 0.2851 | 0 | 164 | 1208 | 13.57616 | 0.4127 | 0 | 42 | 359 | 11.69916 | 0.3998 | 0 | 0 | 1651 | 0.0000000 | 0.09479 | 0 | 1116 | 1757 | 63.51736 | 0.7591 | 1 | 720 | 3 | 0.4166667 | 0.2470 | 0 | 5 | 0.6944444 | 0.5106 | 0 | 9 | 573 | 1.5706806 | 0.46880 | 0 | 57 | 573 | 9.947644 | 0.7317 | 0 | 212 | 1757 | 12.066022 | 0.9549 | 1 | 2.45440 | 0.4888 | 0 | 1.70929 | 0.1025 | 0 | 0.7591 | 0.7527 | 1 | 2.91300 | 0.68620 | 1 | 7.83579 | 0.4802 | 2 |
01001020300 | 01 | 001 | 020300 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 3694 | 1464 | 1351 | 842 | 3694 | 22.79372 | 0.5833 | 0 | 53 | 1994 | 2.657974 | 0.22050 | 0 | 117 | 967 | 12.099276 | 0.11370 | 0 | 147 | 384 | 38.28125 | 0.3856 | 0 | 264 | 1351 | 19.54108 | 0.1827 | 0 | 317 | 2477 | 12.797739 | 0.6460 | 0 | 127 | 3673 | 3.457664 | 0.2308 | 0 | 464 | 12.56091 | 0.3088 | 0 | 929 | 25.14889 | 0.7080 | 0 | 473 | 2744 | 17.23761 | 0.6211 | 0 | 263 | 975 | 26.97436 | 0.8234 | 1 | 128 | 3586 | 3.5694367 | 0.70770 | 0 | 1331 | 3694 | 36.03140 | 0.5515 | 0 | 1464 | 26 | 1.7759563 | 0.3675 | 0 | 14 | 0.9562842 | 0.5389 | 0 | 35 | 1351 | 2.5906736 | 0.60550 | 0 | 42 | 1351 | 3.108808 | 0.3415 | 0 | 0 | 3694 | 0.000000 | 0.1831 | 0 | 1.86330 | 0.3063 | 0 | 3.16900 | 0.8380 | 1 | 0.5515 | 0.5468 | 0 | 2.03650 | 0.26830 | 0 | 7.62030 | 0.4460 | 1 |
01001020400 | 01 | 001 | 020400 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 3539 | 1741 | 1636 | 503 | 3539 | 14.21305 | 0.3472 | 0 | 39 | 1658 | 2.352232 | 0.17990 | 0 | 219 | 1290 | 16.976744 | 0.30880 | 0 | 74 | 346 | 21.38728 | 0.1037 | 0 | 293 | 1636 | 17.90954 | 0.1333 | 0 | 173 | 2775 | 6.234234 | 0.3351 | 0 | 169 | 3529 | 4.788892 | 0.3448 | 0 | 969 | 27.38062 | 0.9225 | 1 | 510 | 14.41085 | 0.1208 | 0 | 670 | 3019 | 22.19278 | 0.8194 | 1 | 148 | 1137 | 13.01671 | 0.4541 | 0 | 89 | 3409 | 2.6107363 | 0.64690 | 0 | 454 | 3539 | 12.82848 | 0.2364 | 0 | 1741 | 143 | 8.2136703 | 0.6028 | 0 | 0 | 0.0000000 | 0.2186 | 0 | 10 | 1636 | 0.6112469 | 0.28340 | 0 | 72 | 1636 | 4.400978 | 0.4538 | 0 | 0 | 3539 | 0.000000 | 0.1831 | 0 | 1.34030 | 0.1575 | 0 | 2.96370 | 0.7496 | 2 | 0.2364 | 0.2344 | 0 | 1.74170 | 0.16270 | 0 | 6.28210 | 0.2389 | 2 |
01001020500 | 01 | 001 | 020500 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 10674 | 4504 | 4424 | 1626 | 10509 | 15.47245 | 0.3851 | 0 | 81 | 5048 | 1.604596 | 0.09431 | 0 | 321 | 2299 | 13.962592 | 0.17970 | 0 | 711 | 2125 | 33.45882 | 0.2836 | 0 | 1032 | 4424 | 23.32731 | 0.3109 | 0 | 531 | 6816 | 7.790493 | 0.4251 | 0 | 301 | 10046 | 2.996217 | 0.1894 | 0 | 1613 | 15.11149 | 0.4553 | 0 | 2765 | 25.90407 | 0.7494 | 0 | 1124 | 7281 | 15.43744 | 0.5253 | 0 | 342 | 2912 | 11.74451 | 0.4019 | 0 | 52 | 9920 | 0.5241935 | 0.35230 | 0 | 2603 | 10674 | 24.38636 | 0.4160 | 0 | 4504 | 703 | 15.6083481 | 0.7378 | 0 | 29 | 0.6438721 | 0.5037 | 0 | 37 | 4424 | 0.8363472 | 0.33420 | 0 | 207 | 4424 | 4.679023 | 0.4754 | 0 | 176 | 10674 | 1.648866 | 0.7598 | 1 | 1.40481 | 0.1743 | 0 | 2.48420 | 0.4802 | 0 | 0.4160 | 0.4125 | 0 | 2.81090 | 0.63730 | 1 | 7.11591 | 0.3654 | 1 |
01001020600 | 01 | 001 | 020600 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 3536 | 1464 | 1330 | 1279 | 3523 | 36.30429 | 0.8215 | 1 | 34 | 1223 | 2.780049 | 0.23780 | 0 | 321 | 1111 | 28.892889 | 0.75870 | 1 | 67 | 219 | 30.59361 | 0.2305 | 0 | 388 | 1330 | 29.17293 | 0.5075 | 0 | 306 | 2380 | 12.857143 | 0.6480 | 0 | 415 | 3496 | 11.870709 | 0.7535 | 1 | 547 | 15.46946 | 0.4760 | 0 | 982 | 27.77149 | 0.8327 | 1 | 729 | 2514 | 28.99761 | 0.9488 | 1 | 95 | 880 | 10.79545 | 0.3601 | 0 | 0 | 3394 | 0.0000000 | 0.09479 | 0 | 985 | 3536 | 27.85633 | 0.4608 | 0 | 1464 | 0 | 0.0000000 | 0.1079 | 0 | 364 | 24.8633880 | 0.9300 | 1 | 0 | 1330 | 0.0000000 | 0.09796 | 0 | 17 | 1330 | 1.278196 | 0.1463 | 0 | 0 | 3536 | 0.000000 | 0.1831 | 0 | 2.96830 | 0.6434 | 2 | 2.71239 | 0.6156 | 2 | 0.4608 | 0.4569 | 0 | 1.46526 | 0.08976 | 1 | 7.60675 | 0.4440 | 5 |
# Divisional 2020 Data
svi_2020_divisional <- load_svi_data(svi_2020, rank_by = "divisional", location = census_division, percentile=.75)
svi_2020_divisional %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt | FIPS_st | FIPS_county | FIPS_tract | state | state_name | county | region_number | region | division_number | division | E_TOTPOP_20 | E_HU_20 | E_HH_20 | E_POV150_20 | ET_POVSTATUS_20 | EP_POV150_20 | EPL_POV150_20 | F_POV150_20 | E_UNEMP_20 | ET_EMPSTATUS_20 | EP_UNEMP_20 | EPL_UNEMP_20 | F_UNEMP_20 | E_HBURD_OWN_20 | ET_HOUSINGCOST_OWN_20 | EP_HBURD_OWN_20 | EPL_HBURD_OWN_20 | F_HBURD_OWN_20 | E_HBURD_RENT_20 | ET_HOUSINGCOST_RENT_20 | EP_HBURD_RENT_20 | EPL_HBURD_RENT_20 | F_HBURD_RENT_20 | E_HBURD_20 | ET_HOUSINGCOST_20 | EP_HBURD_20 | EPL_HBURD_20 | F_HBURD_20 | E_NOHSDP_20 | ET_EDSTATUS_20 | EP_NOHSDP_20 | EPL_NOHSDP_20 | F_NOHSDP_20 | E_UNINSUR_20 | ET_INSURSTATUS_20 | EP_UNINSUR_20 | EPL_UNINSUR_20 | F_UNINSUR_20 | E_AGE65_20 | EP_AGE65_20 | EPL_AGE65_20 | F_AGE65_20 | E_AGE17_20 | EP_AGE17_20 | EPL_AGE17_20 | F_AGE17_20 | E_DISABL_20 | ET_DISABLSTATUS_20 | EP_DISABL_20 | EPL_DISABL_20 | F_DISABL_20 | E_SNGPNT_20 | ET_FAMILIES_20 | EP_SNGPNT_20 | EPL_SNGPNT_20 | F_SNGPNT_20 | E_LIMENG_20 | ET_POPAGE5UP_20 | EP_LIMENG_20 | EPL_LIMENG_20 | F_LIMENG_20 | E_MINRTY_20 | ET_POPETHRACE_20 | EP_MINRTY_20 | EPL_MINRTY_20 | F_MINRTY_20 | E_STRHU_20 | E_MUNIT_20 | EP_MUNIT_20 | EPL_MUNIT_20 | F_MUNIT_20 | E_MOBILE_20 | EP_MOBILE_20 | EPL_MOBILE_20 | F_MOBILE_20 | E_CROWD_20 | ET_OCCUPANTS_20 | EP_CROWD_20 | EPL_CROWD_20 | F_CROWD_20 | E_NOVEH_20 | ET_KNOWNVEH_20 | EP_NOVEH_20 | EPL_NOVEH_20 | F_NOVEH_20 | E_GROUPQ_20 | ET_HHTYPE_20 | EP_GROUPQ_20 | EPL_GROUPQ_20 | F_GROUPQ_20 | SPL_THEME1 | RPL_THEME1 | F_THEME1 | SPL_THEME2 | RPL_THEME2 | F_THEME2 | SPL_THEME3 | RPL_THEME3 | F_THEME3 | SPL_THEME4 | RPL_THEME4 | F_THEME4 | SPL_THEMES | RPL_THEMES | F_TOTAL |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
34001000100 | 34 | 001 | 000100 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 2157 | 941 | 784 | 1182 | 2157 | 54.79833 | 0.9571 | 1 | 242 | 1058 | 22.873346 | 0.9922 | 1 | 215 | 342 | 62.86550 | 0.9780 | 1 | 316 | 442 | 71.49321 | 0.9481 | 1 | 531 | 784 | 67.72959 | 0.9893 | 1 | 396 | 1274 | 31.08320 | 0.9497 | 1 | 266 | 2157 | 12.331943 | 0.9041 | 1 | 185 | 8.576727 | 0.09430 | 0 | 552 | 25.59110 | 0.8128 | 1 | 297 | 1605 | 18.504673 | 0.74880 | 0 | 83 | 510 | 16.27451 | 0.6090 | 0 | 251 | 2020 | 12.425743 | 0.8710 | 1 | 1852 | 2157 | 85.85999 | 0.8476 | 1 | 941 | 118 | 12.5398512 | 0.6385 | 0 | 0 | 0.0000000 | 0.3216 | 0 | 67 | 784 | 8.545918 | 0.8657 | 1 | 212 | 784 | 27.04082 | 0.7502 | 1 | 0 | 2157 | 0.0000000 | 0.1517 | 0 | 4.7924 | 0.9850 | 5 | 3.13590 | 0.8217 | 2 | 0.8476 | 0.8400 | 1 | 2.7277 | 0.6085 | 2 | 11.50360 | 0.9104 | 10 |
34001000200 | 34 | 001 | 000200 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 3510 | 2046 | 1353 | 1021 | 3510 | 29.08832 | 0.7682 | 1 | 121 | 1852 | 6.533477 | 0.6717 | 0 | 343 | 696 | 49.28161 | 0.9273 | 1 | 416 | 657 | 63.31811 | 0.8696 | 1 | 759 | 1353 | 56.09756 | 0.9321 | 1 | 553 | 2338 | 23.65269 | 0.8871 | 1 | 354 | 3510 | 10.085470 | 0.8530 | 1 | 643 | 18.319088 | 0.60310 | 0 | 1002 | 28.54701 | 0.9055 | 1 | 450 | 2508 | 17.942584 | 0.72330 | 0 | 237 | 786 | 30.15267 | 0.8539 | 1 | 534 | 3375 | 15.822222 | 0.9062 | 1 | 2534 | 3510 | 72.19373 | 0.7818 | 1 | 2046 | 906 | 44.2815249 | 0.8690 | 1 | 0 | 0.0000000 | 0.3216 | 0 | 119 | 1353 | 8.795270 | 0.8711 | 1 | 324 | 1353 | 23.94678 | 0.7255 | 0 | 0 | 3510 | 0.0000000 | 0.1517 | 0 | 4.1121 | 0.9003 | 4 | 3.99200 | 0.9781 | 3 | 0.7818 | 0.7747 | 1 | 2.9389 | 0.7011 | 2 | 11.82480 | 0.9310 | 10 |
34001000300 | 34 | 001 | 000300 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 3801 | 1640 | 1226 | 1857 | 3801 | 48.85556 | 0.9333 | 1 | 226 | 1800 | 12.555556 | 0.9267 | 1 | 111 | 280 | 39.64286 | 0.8339 | 1 | 608 | 946 | 64.27061 | 0.8842 | 1 | 719 | 1226 | 58.64600 | 0.9528 | 1 | 650 | 2275 | 28.57143 | 0.9337 | 1 | 1027 | 3801 | 27.019206 | 0.9914 | 1 | 380 | 9.997369 | 0.14040 | 0 | 1223 | 32.17574 | 0.9607 | 1 | 219 | 2578 | 8.494957 | 0.15680 | 0 | 268 | 909 | 29.48295 | 0.8456 | 1 | 940 | 3400 | 27.647059 | 0.9728 | 1 | 3318 | 3801 | 87.29282 | 0.8579 | 1 | 1640 | 262 | 15.9756098 | 0.6917 | 0 | 0 | 0.0000000 | 0.3216 | 0 | 124 | 1226 | 10.114192 | 0.8955 | 1 | 477 | 1226 | 38.90701 | 0.8258 | 1 | 0 | 3801 | 0.0000000 | 0.1517 | 0 | 4.7379 | 0.9829 | 5 | 3.07630 | 0.8013 | 3 | 0.8579 | 0.8501 | 1 | 2.8863 | 0.6781 | 2 | 11.55840 | 0.9150 | 11 |
34001000400 | 34 | 001 | 000400 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 3178 | 2264 | 1390 | 1508 | 3176 | 47.48111 | 0.9246 | 1 | 172 | 1804 | 9.534368 | 0.8460 | 1 | 205 | 468 | 43.80342 | 0.8858 | 1 | 622 | 922 | 67.46204 | 0.9192 | 1 | 827 | 1390 | 59.49640 | 0.9587 | 1 | 364 | 2076 | 17.53372 | 0.8013 | 1 | 476 | 3178 | 14.977974 | 0.9390 | 1 | 483 | 15.198238 | 0.41220 | 0 | 539 | 16.96035 | 0.2484 | 0 | 319 | 2639 | 12.087912 | 0.38790 | 0 | 101 | 565 | 17.87611 | 0.6539 | 0 | 583 | 3022 | 19.291860 | 0.9349 | 1 | 2186 | 3178 | 68.78540 | 0.7658 | 1 | 2264 | 1609 | 71.0689046 | 0.9266 | 1 | 15 | 0.6625442 | 0.7078 | 0 | 226 | 1390 | 16.258993 | 0.9567 | 1 | 599 | 1390 | 43.09353 | 0.8474 | 1 | 20 | 3178 | 0.6293266 | 0.6292 | 0 | 4.4696 | 0.9558 | 5 | 2.63730 | 0.5864 | 1 | 0.7658 | 0.7588 | 1 | 4.0677 | 0.9762 | 3 | 11.94040 | 0.9387 | 10 |
34001000500 | 34 | 001 | 000500 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 3385 | 1185 | 945 | 1682 | 3364 | 50.00000 | 0.9391 | 1 | 72 | 1577 | 4.565631 | 0.4586 | 0 | 185 | 468 | 39.52991 | 0.8332 | 1 | 362 | 477 | 75.89099 | 0.9703 | 1 | 547 | 945 | 57.88360 | 0.9477 | 1 | 592 | 1983 | 29.85376 | 0.9422 | 1 | 738 | 3385 | 21.802068 | 0.9817 | 1 | 240 | 7.090103 | 0.05988 | 0 | 1129 | 33.35303 | 0.9689 | 1 | 135 | 2256 | 5.984043 | 0.04817 | 0 | 110 | 717 | 15.34170 | 0.5822 | 0 | 721 | 3076 | 23.439532 | 0.9569 | 1 | 3029 | 3385 | 89.48301 | 0.8727 | 1 | 1185 | 9 | 0.7594937 | 0.2382 | 0 | 0 | 0.0000000 | 0.3216 | 0 | 103 | 945 | 10.899471 | 0.9072 | 1 | 263 | 945 | 27.83069 | 0.7560 | 1 | 0 | 3385 | 0.0000000 | 0.1517 | 0 | 4.2693 | 0.9283 | 4 | 2.61605 | 0.5709 | 2 | 0.8727 | 0.8648 | 1 | 2.3747 | 0.4357 | 2 | 10.13275 | 0.7921 | 9 |
34001001100 | 34 | 001 | 001100 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 1950 | 1267 | 1096 | 1131 | 1950 | 58.00000 | 0.9678 | 1 | 66 | 706 | 9.348442 | 0.8395 | 1 | 42 | 101 | 41.58416 | 0.8612 | 1 | 309 | 995 | 31.05528 | 0.1959 | 0 | 351 | 1096 | 32.02555 | 0.4782 | 0 | 510 | 1379 | 36.98332 | 0.9763 | 1 | 155 | 1950 | 7.948718 | 0.7660 | 1 | 392 | 20.102564 | 0.69880 | 0 | 447 | 22.92308 | 0.6712 | 0 | 570 | 1503 | 37.924152 | 0.99200 | 1 | 143 | 374 | 38.23529 | 0.9167 | 1 | 109 | 1841 | 5.920695 | 0.7464 | 0 | 1909 | 1950 | 97.89744 | 0.9529 | 1 | 1267 | 479 | 37.8058406 | 0.8464 | 1 | 0 | 0.0000000 | 0.3216 | 0 | 33 | 1096 | 3.010949 | 0.6446 | 0 | 743 | 1096 | 67.79197 | 0.9414 | 1 | 0 | 1950 | 0.0000000 | 0.1517 | 0 | 4.0278 | 0.8848 | 4 | 4.02510 | 0.9798 | 2 | 0.9529 | 0.9442 | 1 | 2.9057 | 0.6869 | 2 | 11.91150 | 0.9365 | 9 |
Next, we want to check that our functions are behaving as expected and have filtered our data sets to include all divisions and states on the national level and only our division/states of interest on the divisional level:
[1] "East South Central Division" "Pacific Division"
[3] "Mountain Division" "West South Central Division"
[5] "New England Division" "South Atlantic Division"
[7] "East North Central Division" "West North Central Division"
[9] "Middle Atlantic Division"
[1] "AL" "AK" "AZ" "AR" "CA" "CO" "CT" "DE" "DC" "FL" "GA" "HI" "ID" "IL" "IN"
[16] "IA" "KS" "KY" "LA" "ME" "MD" "MA" "MI" "MN" "MS" "MO" "MT" "NE" "NV" "NH"
[31] "NJ" "NM" "NY" "NC" "ND" "OH" "OK" "OR" "PA" "RI" "SC" "SD" "TN" "TX" "UT"
[46] "VT" "VA" "WA" "WV" "WI" "WY"
[1] "East South Central Division" "Pacific Division"
[3] "Mountain Division" "West South Central Division"
[5] "New England Division" "South Atlantic Division"
[7] "East North Central Division" "West North Central Division"
[9] "Middle Atlantic Division"
[1] "AL" "AK" "AZ" "AR" "CA" "CO" "CT" "DE" "DC" "FL" "GA" "HI" "ID" "IL" "IN"
[16] "IA" "KS" "KY" "LA" "ME" "MD" "MA" "MI" "MN" "MS" "MO" "MT" "NE" "NV" "NH"
[31] "NJ" "NM" "NY" "NC" "ND" "OH" "OK" "OR" "PA" "RI" "SC" "SD" "TN" "TX" "UT"
[46] "VT" "VA" "WA" "WV" "WI" "WY"
# Find tracts with divisional data in both 2010 and 2020
svi_divisional <- merge_svi_data(svi_2010_divisional, svi_2020_divisional)
svi_divisional %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt | FIPS_st | FIPS_county | FIPS_tract | state | state_name | county | region_number | region | division_number | division | E_TOTPOP_10 | E_HU_10 | E_HH_10 | E_POV150_10 | ET_POVSTATUS_10 | EP_POV150_10 | EPL_POV150_10 | F_POV150_10 | E_UNEMP_10 | ET_EMPSTATUS_10 | EP_UNEMP_10 | EPL_UNEMP_10 | F_UNEMP_10 | E_HBURD_OWN_10 | ET_HOUSINGCOST_OWN_10 | EP_HBURD_OWN_10 | EPL_HBURD_OWN_10 | F_HBURD_OWN_10 | E_HBURD_RENT_10 | ET_HOUSINGCOST_RENT_10 | EP_HBURD_RENT_10 | EPL_HBURD_RENT_10 | F_HBURD_RENT_10 | E_HBURD_10 | ET_HOUSINGCOST_10 | EP_HBURD_10 | EPL_HBURD_10 | F_HBURD_10 | E_NOHSDP_10 | ET_EDSTATUS_10 | EP_NOHSDP_10 | EPL_NOHSDP_10 | F_NOHSDP_10 | E_UNINSUR_12 | ET_INSURSTATUS_12 | EP_UNINSUR_12 | EPL_UNINSUR_12 | F_UNINSUR_12 | E_AGE65_10 | EP_AGE65_10 | EPL_AGE65_10 | F_AGE65_10 | E_AGE17_10 | EP_AGE17_10 | EPL_AGE17_10 | F_AGE17_10 | E_DISABL_12 | ET_DISABLSTATUS_12 | EP_DISABL_12 | EPL_DISABL_12 | F_DISABL_12 | E_SNGPNT_10 | ET_FAMILIES_10 | EP_SNGPNT_10 | EPL_SNGPNT_10 | F_SNGPNT_10 | E_LIMENG_10 | ET_POPAGE5UP_10 | EP_LIMENG_10 | EPL_LIMENG_10 | F_LIMENG_10 | E_MINRTY_10 | ET_POPETHRACE_10 | EP_MINRTY_10 | EPL_MINRTY_10 | F_MINRTY_10 | E_STRHU_10 | E_MUNIT_10 | EP_MUNIT_10 | EPL_MUNIT_10 | F_MUNIT_10 | E_MOBILE_10 | EP_MOBILE_10 | EPL_MOBILE_10 | F_MOBILE_10 | E_CROWD_10 | ET_OCCUPANTS_10 | EP_CROWD_10 | EPL_CROWD_10 | F_CROWD_10 | E_NOVEH_10 | ET_KNOWNVEH_10 | EP_NOVEH_10 | EPL_NOVEH_10 | F_NOVEH_10 | E_GROUPQ_10 | ET_HHTYPE_10 | EP_GROUPQ_10 | EPL_GROUPQ_10 | F_GROUPQ_10 | SPL_THEME1_10 | RPL_THEME1_10 | F_THEME1_10 | SPL_THEME2_10 | RPL_THEME2_10 | F_THEME2_10 | SPL_THEME3_10 | RPL_THEME3_10 | F_THEME3_10 | SPL_THEME4_10 | RPL_THEME4_10 | F_THEME4_10 | SPL_THEMES_10 | RPL_THEMES_10 | F_TOTAL_10 | E_TOTPOP_20 | E_HU_20 | E_HH_20 | E_POV150_20 | ET_POVSTATUS_20 | EP_POV150_20 | EPL_POV150_20 | F_POV150_20 | E_UNEMP_20 | ET_EMPSTATUS_20 | EP_UNEMP_20 | EPL_UNEMP_20 | F_UNEMP_20 | E_HBURD_OWN_20 | ET_HOUSINGCOST_OWN_20 | EP_HBURD_OWN_20 | EPL_HBURD_OWN_20 | F_HBURD_OWN_20 | E_HBURD_RENT_20 | ET_HOUSINGCOST_RENT_20 | EP_HBURD_RENT_20 | EPL_HBURD_RENT_20 | F_HBURD_RENT_20 | E_HBURD_20 | ET_HOUSINGCOST_20 | EP_HBURD_20 | EPL_HBURD_20 | F_HBURD_20 | E_NOHSDP_20 | ET_EDSTATUS_20 | EP_NOHSDP_20 | EPL_NOHSDP_20 | F_NOHSDP_20 | E_UNINSUR_20 | ET_INSURSTATUS_20 | EP_UNINSUR_20 | EPL_UNINSUR_20 | F_UNINSUR_20 | E_AGE65_20 | EP_AGE65_20 | EPL_AGE65_20 | F_AGE65_20 | E_AGE17_20 | EP_AGE17_20 | EPL_AGE17_20 | F_AGE17_20 | E_DISABL_20 | ET_DISABLSTATUS_20 | EP_DISABL_20 | EPL_DISABL_20 | F_DISABL_20 | E_SNGPNT_20 | ET_FAMILIES_20 | EP_SNGPNT_20 | EPL_SNGPNT_20 | F_SNGPNT_20 | E_LIMENG_20 | ET_POPAGE5UP_20 | EP_LIMENG_20 | EPL_LIMENG_20 | F_LIMENG_20 | E_MINRTY_20 | ET_POPETHRACE_20 | EP_MINRTY_20 | EPL_MINRTY_20 | F_MINRTY_20 | E_STRHU_20 | E_MUNIT_20 | EP_MUNIT_20 | EPL_MUNIT_20 | F_MUNIT_20 | E_MOBILE_20 | EP_MOBILE_20 | EPL_MOBILE_20 | F_MOBILE_20 | E_CROWD_20 | ET_OCCUPANTS_20 | EP_CROWD_20 | EPL_CROWD_20 | F_CROWD_20 | E_NOVEH_20 | ET_KNOWNVEH_20 | EP_NOVEH_20 | EPL_NOVEH_20 | F_NOVEH_20 | E_GROUPQ_20 | ET_HHTYPE_20 | EP_GROUPQ_20 | EPL_GROUPQ_20 | F_GROUPQ_20 | SPL_THEME1_20 | RPL_THEME1_20 | F_THEME1_20 | SPL_THEME2_20 | RPL_THEME2_20 | F_THEME2_20 | SPL_THEME3_20 | RPL_THEME3_20 | F_THEME3_20 | SPL_THEME4_20 | RPL_THEME4_20 | F_THEME4_20 | SPL_THEMES_20 | RPL_THEMES_20 | F_TOTAL_20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
34001000100 | 34 | 001 | 000100 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 2907 | 1088 | 983 | 1127 | 2907 | 38.76849 | 0.8482 | 1 | 144 | 1433 | 10.048849 | 0.7544 | 1 | 280 | 435 | 64.36782 | 0.9529 | 1 | 204 | 548 | 37.22628 | 0.2998 | 0 | 484 | 983 | 49.23703 | 0.7813 | 1 | 468 | 1759 | 26.60603 | 0.8634 | 1 | 532 | 2543 | 20.92017 | 0.8978 | 1 | 250 | 8.599931 | 0.1777 | 0 | 944 | 32.47334 | 0.94170 | 1 | 186 | 1851 | 10.04862 | 0.2706 | 0 | 266 | 678 | 39.233038 | 0.8981 | 1 | 177 | 2611 | 6.779012 | 0.7778 | 1 | 1928 | 2907 | 66.32267 | 0.7743 | 1 | 1088 | 113 | 10.386029 | 0.6229 | 0 | 9 | 0.8272059 | 0.7223 | 0 | 80 | 983 | 8.138352 | 0.8657 | 1 | 265 | 983 | 26.95829 | 0.7354 | 0 | 0 | 2907 | 0.000000 | 0.3512 | 0 | 4.1451 | 0.8935 | 5 | 3.06590 | 0.7944 | 3 | 0.7743 | 0.7667 | 1 | 3.2975 | 0.8414 | 1 | 11.28280 | 0.8862 | 10 | 2157 | 941 | 784 | 1182 | 2157 | 54.79833 | 0.9571 | 1 | 242 | 1058 | 22.873346 | 0.9922 | 1 | 215 | 342 | 62.86550 | 0.9780 | 1 | 316 | 442 | 71.49321 | 0.9481 | 1 | 531 | 784 | 67.72959 | 0.9893 | 1 | 396 | 1274 | 31.08320 | 0.9497 | 1 | 266 | 2157 | 12.331943 | 0.9041 | 1 | 185 | 8.576727 | 0.09430 | 0 | 552 | 25.59110 | 0.8128 | 1 | 297 | 1605 | 18.504673 | 0.74880 | 0 | 83 | 510 | 16.27451 | 0.6090 | 0 | 251 | 2020 | 12.425743 | 0.8710 | 1 | 1852 | 2157 | 85.85999 | 0.8476 | 1 | 941 | 118 | 12.5398512 | 0.6385 | 0 | 0 | 0.0000000 | 0.3216 | 0 | 67 | 784 | 8.545918 | 0.8657 | 1 | 212 | 784 | 27.04082 | 0.7502 | 1 | 0 | 2157 | 0.0000000 | 0.1517 | 0 | 4.7924 | 0.9850 | 5 | 3.13590 | 0.8217 | 2 | 0.8476 | 0.8400 | 1 | 2.7277 | 0.6085 | 2 | 11.50360 | 0.9104 | 10 |
34001000200 | 34 | 001 | 000200 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 3189 | 2217 | 1473 | 519 | 3189 | 16.27469 | 0.4806 | 0 | 109 | 1558 | 6.996149 | 0.5179 | 0 | 573 | 955 | 60.00000 | 0.9323 | 1 | 199 | 518 | 38.41699 | 0.3261 | 0 | 772 | 1473 | 52.41005 | 0.8418 | 1 | 405 | 2579 | 15.70376 | 0.6491 | 0 | 484 | 3547 | 13.64533 | 0.7154 | 0 | 847 | 26.560050 | 0.9629 | 1 | 436 | 13.67200 | 0.08181 | 0 | 608 | 3005 | 20.23295 | 0.8466 | 1 | 42 | 857 | 4.900817 | 0.1204 | 0 | 422 | 3072 | 13.736979 | 0.8799 | 1 | 1792 | 3189 | 56.19316 | 0.7390 | 0 | 2217 | 901 | 40.640505 | 0.8693 | 1 | 0 | 0.0000000 | 0.3251 | 0 | 48 | 1473 | 3.258656 | 0.7064 | 0 | 250 | 1473 | 16.97217 | 0.6444 | 0 | 0 | 3189 | 0.000000 | 0.3512 | 0 | 3.2048 | 0.6963 | 1 | 2.89161 | 0.7231 | 3 | 0.7390 | 0.7317 | 0 | 2.8964 | 0.6887 | 1 | 9.73181 | 0.7340 | 5 | 3510 | 2046 | 1353 | 1021 | 3510 | 29.08832 | 0.7682 | 1 | 121 | 1852 | 6.533477 | 0.6717 | 0 | 343 | 696 | 49.28161 | 0.9273 | 1 | 416 | 657 | 63.31811 | 0.8696 | 1 | 759 | 1353 | 56.09756 | 0.9321 | 1 | 553 | 2338 | 23.65269 | 0.8871 | 1 | 354 | 3510 | 10.085470 | 0.8530 | 1 | 643 | 18.319088 | 0.60310 | 0 | 1002 | 28.54701 | 0.9055 | 1 | 450 | 2508 | 17.942584 | 0.72330 | 0 | 237 | 786 | 30.15267 | 0.8539 | 1 | 534 | 3375 | 15.822222 | 0.9062 | 1 | 2534 | 3510 | 72.19373 | 0.7818 | 1 | 2046 | 906 | 44.2815249 | 0.8690 | 1 | 0 | 0.0000000 | 0.3216 | 0 | 119 | 1353 | 8.795270 | 0.8711 | 1 | 324 | 1353 | 23.94678 | 0.7255 | 0 | 0 | 3510 | 0.0000000 | 0.1517 | 0 | 4.1121 | 0.9003 | 4 | 3.99200 | 0.9781 | 3 | 0.7818 | 0.7747 | 1 | 2.9389 | 0.7011 | 2 | 11.82480 | 0.9310 | 10 |
34001000300 | 34 | 001 | 000300 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 3997 | 1823 | 1357 | 1401 | 3968 | 35.30746 | 0.8164 | 1 | 382 | 2238 | 17.068811 | 0.9376 | 1 | 176 | 329 | 53.49544 | 0.8855 | 1 | 604 | 1028 | 58.75486 | 0.7947 | 1 | 780 | 1357 | 57.47973 | 0.9165 | 1 | 920 | 2677 | 34.36683 | 0.9346 | 1 | 1351 | 4149 | 32.56206 | 0.9811 | 1 | 314 | 7.855892 | 0.1437 | 0 | 937 | 23.44258 | 0.55900 | 0 | 319 | 3054 | 10.44532 | 0.3000 | 0 | 187 | 782 | 23.913044 | 0.7498 | 0 | 1080 | 3671 | 29.419777 | 0.9742 | 1 | 3357 | 3997 | 83.98799 | 0.8419 | 1 | 1823 | 363 | 19.912233 | 0.7535 | 1 | 0 | 0.0000000 | 0.3251 | 0 | 150 | 1357 | 11.053795 | 0.9136 | 1 | 651 | 1357 | 47.97347 | 0.8585 | 1 | 0 | 3997 | 0.000000 | 0.3512 | 0 | 4.5862 | 0.9691 | 5 | 2.72670 | 0.6360 | 1 | 0.8419 | 0.8336 | 1 | 3.2019 | 0.8054 | 3 | 11.35670 | 0.8920 | 10 | 3801 | 1640 | 1226 | 1857 | 3801 | 48.85556 | 0.9333 | 1 | 226 | 1800 | 12.555556 | 0.9267 | 1 | 111 | 280 | 39.64286 | 0.8339 | 1 | 608 | 946 | 64.27061 | 0.8842 | 1 | 719 | 1226 | 58.64600 | 0.9528 | 1 | 650 | 2275 | 28.57143 | 0.9337 | 1 | 1027 | 3801 | 27.019206 | 0.9914 | 1 | 380 | 9.997369 | 0.14040 | 0 | 1223 | 32.17574 | 0.9607 | 1 | 219 | 2578 | 8.494957 | 0.15680 | 0 | 268 | 909 | 29.48295 | 0.8456 | 1 | 940 | 3400 | 27.647059 | 0.9728 | 1 | 3318 | 3801 | 87.29282 | 0.8579 | 1 | 1640 | 262 | 15.9756098 | 0.6917 | 0 | 0 | 0.0000000 | 0.3216 | 0 | 124 | 1226 | 10.114192 | 0.8955 | 1 | 477 | 1226 | 38.90701 | 0.8258 | 1 | 0 | 3801 | 0.0000000 | 0.1517 | 0 | 4.7379 | 0.9829 | 5 | 3.07630 | 0.8013 | 3 | 0.8579 | 0.8501 | 1 | 2.8863 | 0.6781 | 2 | 11.55840 | 0.9150 | 11 |
34001000400 | 34 | 001 | 000400 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 2902 | 2683 | 1401 | 1172 | 2902 | 40.38594 | 0.8615 | 1 | 190 | 1389 | 13.678906 | 0.8811 | 1 | 364 | 707 | 51.48515 | 0.8627 | 1 | 507 | 694 | 73.05476 | 0.9503 | 1 | 871 | 1401 | 62.16988 | 0.9572 | 1 | 481 | 1981 | 24.28067 | 0.8339 | 1 | 674 | 3204 | 21.03620 | 0.8998 | 1 | 434 | 14.955203 | 0.6083 | 0 | 596 | 20.53756 | 0.33980 | 0 | 426 | 2607 | 16.34062 | 0.6886 | 0 | 111 | 652 | 17.024540 | 0.6204 | 0 | 215 | 2736 | 7.858187 | 0.8008 | 1 | 1792 | 2902 | 61.75052 | 0.7584 | 1 | 2683 | 2049 | 76.369735 | 0.9401 | 1 | 0 | 0.0000000 | 0.3251 | 0 | 69 | 1401 | 4.925053 | 0.7847 | 1 | 511 | 1401 | 36.47395 | 0.7992 | 1 | 72 | 2902 | 2.481048 | 0.8114 | 1 | 4.4335 | 0.9468 | 5 | 3.05790 | 0.7908 | 1 | 0.7584 | 0.7510 | 1 | 3.6605 | 0.9391 | 4 | 11.91030 | 0.9339 | 11 | 3178 | 2264 | 1390 | 1508 | 3176 | 47.48111 | 0.9246 | 1 | 172 | 1804 | 9.534368 | 0.8460 | 1 | 205 | 468 | 43.80342 | 0.8858 | 1 | 622 | 922 | 67.46204 | 0.9192 | 1 | 827 | 1390 | 59.49640 | 0.9587 | 1 | 364 | 2076 | 17.53372 | 0.8013 | 1 | 476 | 3178 | 14.977974 | 0.9390 | 1 | 483 | 15.198238 | 0.41220 | 0 | 539 | 16.96035 | 0.2484 | 0 | 319 | 2639 | 12.087912 | 0.38790 | 0 | 101 | 565 | 17.87611 | 0.6539 | 0 | 583 | 3022 | 19.291860 | 0.9349 | 1 | 2186 | 3178 | 68.78540 | 0.7658 | 1 | 2264 | 1609 | 71.0689046 | 0.9266 | 1 | 15 | 0.6625442 | 0.7078 | 0 | 226 | 1390 | 16.258993 | 0.9567 | 1 | 599 | 1390 | 43.09353 | 0.8474 | 1 | 20 | 3178 | 0.6293266 | 0.6292 | 0 | 4.4696 | 0.9558 | 5 | 2.63730 | 0.5864 | 1 | 0.7658 | 0.7588 | 1 | 4.0677 | 0.9762 | 3 | 11.94040 | 0.9387 | 10 |
34001000500 | 34 | 001 | 000500 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 3483 | 1241 | 1027 | 1938 | 3483 | 55.64169 | 0.9533 | 1 | 124 | 1630 | 7.607362 | 0.5830 | 0 | 227 | 446 | 50.89686 | 0.8549 | 1 | 478 | 581 | 82.27194 | 0.9799 | 1 | 705 | 1027 | 68.64654 | 0.9863 | 1 | 733 | 2077 | 35.29129 | 0.9396 | 1 | 727 | 3258 | 22.31430 | 0.9149 | 1 | 377 | 10.824002 | 0.3081 | 0 | 1055 | 30.28998 | 0.90140 | 1 | 268 | 2401 | 11.16202 | 0.3549 | 0 | 209 | 763 | 27.391874 | 0.7940 | 1 | 911 | 3077 | 29.606760 | 0.9746 | 1 | 3036 | 3483 | 87.16624 | 0.8550 | 1 | 1241 | 52 | 4.190169 | 0.4505 | 0 | 4 | 0.3223207 | 0.6567 | 0 | 113 | 1027 | 11.002921 | 0.9128 | 1 | 422 | 1027 | 41.09056 | 0.8250 | 1 | 0 | 3483 | 0.000000 | 0.3512 | 0 | 4.3771 | 0.9379 | 4 | 3.33300 | 0.8766 | 3 | 0.8550 | 0.8467 | 1 | 3.1962 | 0.8026 | 2 | 11.76130 | 0.9229 | 10 | 3385 | 1185 | 945 | 1682 | 3364 | 50.00000 | 0.9391 | 1 | 72 | 1577 | 4.565631 | 0.4586 | 0 | 185 | 468 | 39.52991 | 0.8332 | 1 | 362 | 477 | 75.89099 | 0.9703 | 1 | 547 | 945 | 57.88360 | 0.9477 | 1 | 592 | 1983 | 29.85376 | 0.9422 | 1 | 738 | 3385 | 21.802068 | 0.9817 | 1 | 240 | 7.090103 | 0.05988 | 0 | 1129 | 33.35303 | 0.9689 | 1 | 135 | 2256 | 5.984043 | 0.04817 | 0 | 110 | 717 | 15.34170 | 0.5822 | 0 | 721 | 3076 | 23.439532 | 0.9569 | 1 | 3029 | 3385 | 89.48301 | 0.8727 | 1 | 1185 | 9 | 0.7594937 | 0.2382 | 0 | 0 | 0.0000000 | 0.3216 | 0 | 103 | 945 | 10.899471 | 0.9072 | 1 | 263 | 945 | 27.83069 | 0.7560 | 1 | 0 | 3385 | 0.0000000 | 0.1517 | 0 | 4.2693 | 0.9283 | 4 | 2.61605 | 0.5709 | 2 | 0.8727 | 0.8648 | 1 | 2.3747 | 0.4357 | 2 | 10.13275 | 0.7921 | 9 |
34001001100 | 34 | 001 | 001100 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 2204 | 1204 | 1204 | 1185 | 2204 | 53.76588 | 0.9457 | 1 | 219 | 927 | 23.624596 | 0.9830 | 1 | 97 | 172 | 56.39535 | 0.9094 | 1 | 462 | 1032 | 44.76744 | 0.4746 | 0 | 559 | 1204 | 46.42857 | 0.7197 | 0 | 346 | 1440 | 24.02778 | 0.8306 | 1 | 469 | 1942 | 24.15036 | 0.9360 | 1 | 363 | 16.470054 | 0.7020 | 0 | 578 | 26.22505 | 0.74410 | 0 | 442 | 1558 | 28.36970 | 0.9675 | 1 | 247 | 396 | 62.373737 | 0.9898 | 1 | 104 | 2051 | 5.070697 | 0.7260 | 0 | 2118 | 2204 | 96.09800 | 0.9204 | 1 | 1204 | 570 | 47.342193 | 0.8858 | 1 | 0 | 0.0000000 | 0.3251 | 0 | 14 | 1204 | 1.162791 | 0.4877 | 0 | 817 | 1204 | 67.85714 | 0.9413 | 1 | 0 | 2204 | 0.000000 | 0.3512 | 0 | 4.4150 | 0.9451 | 4 | 4.12940 | 0.9805 | 2 | 0.9204 | 0.9114 | 1 | 2.9911 | 0.7243 | 2 | 12.45590 | 0.9597 | 9 | 1950 | 1267 | 1096 | 1131 | 1950 | 58.00000 | 0.9678 | 1 | 66 | 706 | 9.348442 | 0.8395 | 1 | 42 | 101 | 41.58416 | 0.8612 | 1 | 309 | 995 | 31.05528 | 0.1959 | 0 | 351 | 1096 | 32.02555 | 0.4782 | 0 | 510 | 1379 | 36.98332 | 0.9763 | 1 | 155 | 1950 | 7.948718 | 0.7660 | 1 | 392 | 20.102564 | 0.69880 | 0 | 447 | 22.92308 | 0.6712 | 0 | 570 | 1503 | 37.924152 | 0.99200 | 1 | 143 | 374 | 38.23529 | 0.9167 | 1 | 109 | 1841 | 5.920695 | 0.7464 | 0 | 1909 | 1950 | 97.89744 | 0.9529 | 1 | 1267 | 479 | 37.8058406 | 0.8464 | 1 | 0 | 0.0000000 | 0.3216 | 0 | 33 | 1096 | 3.010949 | 0.6446 | 0 | 743 | 1096 | 67.79197 | 0.9414 | 1 | 0 | 1950 | 0.0000000 | 0.1517 | 0 | 4.0278 | 0.8848 | 4 | 4.02510 | 0.9798 | 2 | 0.9529 | 0.9442 | 1 | 2.9057 | 0.6869 | 2 | 11.91150 | 0.9365 | 9 |
# Find tracts with divisional data in both 2010 and 2020
svi_national <- merge_svi_data(svi_2010_national, svi_2020_national)
svi_national %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt | FIPS_st | FIPS_county | FIPS_tract | state | state_name | county | region_number | region | division_number | division | E_TOTPOP_10 | E_HU_10 | E_HH_10 | E_POV150_10 | ET_POVSTATUS_10 | EP_POV150_10 | EPL_POV150_10 | F_POV150_10 | E_UNEMP_10 | ET_EMPSTATUS_10 | EP_UNEMP_10 | EPL_UNEMP_10 | F_UNEMP_10 | E_HBURD_OWN_10 | ET_HOUSINGCOST_OWN_10 | EP_HBURD_OWN_10 | EPL_HBURD_OWN_10 | F_HBURD_OWN_10 | E_HBURD_RENT_10 | ET_HOUSINGCOST_RENT_10 | EP_HBURD_RENT_10 | EPL_HBURD_RENT_10 | F_HBURD_RENT_10 | E_HBURD_10 | ET_HOUSINGCOST_10 | EP_HBURD_10 | EPL_HBURD_10 | F_HBURD_10 | E_NOHSDP_10 | ET_EDSTATUS_10 | EP_NOHSDP_10 | EPL_NOHSDP_10 | F_NOHSDP_10 | E_UNINSUR_12 | ET_INSURSTATUS_12 | EP_UNINSUR_12 | EPL_UNINSUR_12 | F_UNINSUR_12 | E_AGE65_10 | EP_AGE65_10 | EPL_AGE65_10 | F_AGE65_10 | E_AGE17_10 | EP_AGE17_10 | EPL_AGE17_10 | F_AGE17_10 | E_DISABL_12 | ET_DISABLSTATUS_12 | EP_DISABL_12 | EPL_DISABL_12 | F_DISABL_12 | E_SNGPNT_10 | ET_FAMILIES_10 | EP_SNGPNT_10 | EPL_SNGPNT_10 | F_SNGPNT_10 | E_LIMENG_10 | ET_POPAGE5UP_10 | EP_LIMENG_10 | EPL_LIMENG_10 | F_LIMENG_10 | E_MINRTY_10 | ET_POPETHRACE_10 | EP_MINRTY_10 | EPL_MINRTY_10 | F_MINRTY_10 | E_STRHU_10 | E_MUNIT_10 | EP_MUNIT_10 | EPL_MUNIT_10 | F_MUNIT_10 | E_MOBILE_10 | EP_MOBILE_10 | EPL_MOBILE_10 | F_MOBILE_10 | E_CROWD_10 | ET_OCCUPANTS_10 | EP_CROWD_10 | EPL_CROWD_10 | F_CROWD_10 | E_NOVEH_10 | ET_KNOWNVEH_10 | EP_NOVEH_10 | EPL_NOVEH_10 | F_NOVEH_10 | E_GROUPQ_10 | ET_HHTYPE_10 | EP_GROUPQ_10 | EPL_GROUPQ_10 | F_GROUPQ_10 | SPL_THEME1_10 | RPL_THEME1_10 | F_THEME1_10 | SPL_THEME2_10 | RPL_THEME2_10 | F_THEME2_10 | SPL_THEME3_10 | RPL_THEME3_10 | F_THEME3_10 | SPL_THEME4_10 | RPL_THEME4_10 | F_THEME4_10 | SPL_THEMES_10 | RPL_THEMES_10 | F_TOTAL_10 | E_TOTPOP_20 | E_HU_20 | E_HH_20 | E_POV150_20 | ET_POVSTATUS_20 | EP_POV150_20 | EPL_POV150_20 | F_POV150_20 | E_UNEMP_20 | ET_EMPSTATUS_20 | EP_UNEMP_20 | EPL_UNEMP_20 | F_UNEMP_20 | E_HBURD_OWN_20 | ET_HOUSINGCOST_OWN_20 | EP_HBURD_OWN_20 | EPL_HBURD_OWN_20 | F_HBURD_OWN_20 | E_HBURD_RENT_20 | ET_HOUSINGCOST_RENT_20 | EP_HBURD_RENT_20 | EPL_HBURD_RENT_20 | F_HBURD_RENT_20 | E_HBURD_20 | ET_HOUSINGCOST_20 | EP_HBURD_20 | EPL_HBURD_20 | F_HBURD_20 | E_NOHSDP_20 | ET_EDSTATUS_20 | EP_NOHSDP_20 | EPL_NOHSDP_20 | F_NOHSDP_20 | E_UNINSUR_20 | ET_INSURSTATUS_20 | EP_UNINSUR_20 | EPL_UNINSUR_20 | F_UNINSUR_20 | E_AGE65_20 | EP_AGE65_20 | EPL_AGE65_20 | F_AGE65_20 | E_AGE17_20 | EP_AGE17_20 | EPL_AGE17_20 | F_AGE17_20 | E_DISABL_20 | ET_DISABLSTATUS_20 | EP_DISABL_20 | EPL_DISABL_20 | F_DISABL_20 | E_SNGPNT_20 | ET_FAMILIES_20 | EP_SNGPNT_20 | EPL_SNGPNT_20 | F_SNGPNT_20 | E_LIMENG_20 | ET_POPAGE5UP_20 | EP_LIMENG_20 | EPL_LIMENG_20 | F_LIMENG_20 | E_MINRTY_20 | ET_POPETHRACE_20 | EP_MINRTY_20 | EPL_MINRTY_20 | F_MINRTY_20 | E_STRHU_20 | E_MUNIT_20 | EP_MUNIT_20 | EPL_MUNIT_20 | F_MUNIT_20 | E_MOBILE_20 | EP_MOBILE_20 | EPL_MOBILE_20 | F_MOBILE_20 | E_CROWD_20 | ET_OCCUPANTS_20 | EP_CROWD_20 | EPL_CROWD_20 | F_CROWD_20 | E_NOVEH_20 | ET_KNOWNVEH_20 | EP_NOVEH_20 | EPL_NOVEH_20 | F_NOVEH_20 | E_GROUPQ_20 | ET_HHTYPE_20 | EP_GROUPQ_20 | EPL_GROUPQ_20 | F_GROUPQ_20 | SPL_THEME1_20 | RPL_THEME1_20 | F_THEME1_20 | SPL_THEME2_20 | RPL_THEME2_20 | F_THEME2_20 | SPL_THEME3_20 | RPL_THEME3_20 | F_THEME3_20 | SPL_THEME4_20 | RPL_THEME4_20 | F_THEME4_20 | SPL_THEMES_20 | RPL_THEMES_20 | F_TOTAL_20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
01001020100 | 01 | 001 | 020100 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 1809 | 771 | 696 | 297 | 1809 | 16.41791 | 0.3871 | 0 | 36 | 889 | 4.049494 | 0.1790 | 0 | 127 | 598 | 21.23746 | 0.20770 | 0 | 47 | 98 | 47.95918 | 0.5767 | 0 | 174 | 696 | 25.00000 | 0.18790 | 0 | 196 | 1242 | 15.780998 | 0.6093 | 0 | 186 | 1759 | 10.574190 | 0.3790 | 0 | 222 | 12.271973 | 0.4876 | 0 | 445 | 24.59923 | 0.5473 | 0 | 298 | 1335 | 22.32210 | 0.8454 | 1 | 27 | 545 | 4.954128 | 0.09275 | 0 | 36 | 1705 | 2.1114370 | 0.59040 | 0 | 385 | 1809 | 21.282477 | 0.4524 | 0 | 771 | 0 | 0.0000000 | 0.1224 | 0 | 92 | 11.9325551 | 0.8005 | 1 | 0 | 696 | 0.0000000 | 0.1238 | 0 | 50 | 696 | 7.183908 | 0.6134 | 0 | 0 | 1809 | 0 | 0.364 | 0 | 1.74230 | 0.28200 | 0 | 2.56345 | 0.5296 | 1 | 0.4524 | 0.4482 | 0 | 2.0241 | 0.2519 | 1 | 6.78225 | 0.3278 | 2 | 1941 | 710 | 693 | 352 | 1941 | 18.13498 | 0.4630 | 0 | 18 | 852 | 2.112676 | 0.15070 | 0 | 81 | 507 | 15.976331 | 0.26320 | 0 | 63 | 186 | 33.87097 | 0.2913 | 0 | 144 | 693 | 20.77922 | 0.2230 | 0 | 187 | 1309 | 14.285714 | 0.6928 | 0 | 187 | 1941 | 9.634209 | 0.6617 | 0 | 295 | 15.19835 | 0.4601 | 0 | 415 | 21.38073 | 0.4681 | 0 | 391 | 1526 | 25.62254 | 0.9011 | 1 | 58 | 555 | 10.45045 | 0.3451 | 0 | 0 | 1843 | 0.0000000 | 0.09479 | 0 | 437 | 1941 | 22.51417 | 0.3902 | 0 | 710 | 0 | 0.0000000 | 0.1079 | 0 | 88 | 12.3943662 | 0.8263 | 1 | 0 | 693 | 0.0000000 | 0.09796 | 0 | 10 | 693 | 1.443001 | 0.1643 | 0 | 0 | 1941 | 0.000000 | 0.1831 | 0 | 2.19120 | 0.4084 | 0 | 2.26919 | 0.3503 | 1 | 0.3902 | 0.3869 | 0 | 1.37956 | 0.07216 | 1 | 6.23015 | 0.2314 | 2 |
01001020200 | 01 | 001 | 020200 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 2020 | 816 | 730 | 495 | 1992 | 24.84940 | 0.5954 | 0 | 68 | 834 | 8.153477 | 0.5754 | 0 | 49 | 439 | 11.16173 | 0.02067 | 0 | 105 | 291 | 36.08247 | 0.3019 | 0 | 154 | 730 | 21.09589 | 0.09312 | 0 | 339 | 1265 | 26.798419 | 0.8392 | 1 | 313 | 2012 | 15.556660 | 0.6000 | 0 | 204 | 10.099010 | 0.3419 | 0 | 597 | 29.55446 | 0.8192 | 1 | 359 | 1515 | 23.69637 | 0.8791 | 1 | 132 | 456 | 28.947368 | 0.83510 | 1 | 15 | 1890 | 0.7936508 | 0.40130 | 0 | 1243 | 2020 | 61.534653 | 0.7781 | 1 | 816 | 0 | 0.0000000 | 0.1224 | 0 | 34 | 4.1666667 | 0.6664 | 0 | 13 | 730 | 1.7808219 | 0.5406 | 0 | 115 | 730 | 15.753425 | 0.8382 | 1 | 0 | 2020 | 0 | 0.364 | 0 | 2.70312 | 0.56650 | 1 | 3.27660 | 0.8614 | 3 | 0.7781 | 0.7709 | 1 | 2.5316 | 0.5047 | 1 | 9.28942 | 0.6832 | 6 | 1757 | 720 | 573 | 384 | 1511 | 25.41363 | 0.6427 | 0 | 29 | 717 | 4.044630 | 0.41320 | 0 | 33 | 392 | 8.418367 | 0.03542 | 0 | 116 | 181 | 64.08840 | 0.9086 | 1 | 149 | 573 | 26.00349 | 0.4041 | 0 | 139 | 1313 | 10.586443 | 0.5601 | 0 | 91 | 1533 | 5.936073 | 0.4343 | 0 | 284 | 16.16392 | 0.5169 | 0 | 325 | 18.49744 | 0.2851 | 0 | 164 | 1208 | 13.57616 | 0.4127 | 0 | 42 | 359 | 11.69916 | 0.3998 | 0 | 0 | 1651 | 0.0000000 | 0.09479 | 0 | 1116 | 1757 | 63.51736 | 0.7591 | 1 | 720 | 3 | 0.4166667 | 0.2470 | 0 | 5 | 0.6944444 | 0.5106 | 0 | 9 | 573 | 1.5706806 | 0.46880 | 0 | 57 | 573 | 9.947644 | 0.7317 | 0 | 212 | 1757 | 12.066022 | 0.9549 | 1 | 2.45440 | 0.4888 | 0 | 1.70929 | 0.1025 | 0 | 0.7591 | 0.7527 | 1 | 2.91300 | 0.68620 | 1 | 7.83579 | 0.4802 | 2 |
01001020300 | 01 | 001 | 020300 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 3543 | 1403 | 1287 | 656 | 3533 | 18.56779 | 0.4443 | 0 | 93 | 1552 | 5.992268 | 0.3724 | 0 | 273 | 957 | 28.52665 | 0.45780 | 0 | 178 | 330 | 53.93939 | 0.7152 | 0 | 451 | 1287 | 35.04274 | 0.49930 | 0 | 346 | 2260 | 15.309734 | 0.5950 | 0 | 252 | 3102 | 8.123791 | 0.2596 | 0 | 487 | 13.745413 | 0.5868 | 0 | 998 | 28.16822 | 0.7606 | 1 | 371 | 2224 | 16.68165 | 0.6266 | 0 | 126 | 913 | 13.800657 | 0.46350 | 0 | 0 | 3365 | 0.0000000 | 0.09298 | 0 | 637 | 3543 | 17.979114 | 0.4049 | 0 | 1403 | 10 | 0.7127584 | 0.3015 | 0 | 2 | 0.1425517 | 0.4407 | 0 | 0 | 1287 | 0.0000000 | 0.1238 | 0 | 101 | 1287 | 7.847708 | 0.6443 | 0 | 0 | 3543 | 0 | 0.364 | 0 | 2.17060 | 0.41010 | 0 | 2.53048 | 0.5116 | 1 | 0.4049 | 0.4011 | 0 | 1.8743 | 0.1942 | 0 | 6.98028 | 0.3576 | 1 | 3694 | 1464 | 1351 | 842 | 3694 | 22.79372 | 0.5833 | 0 | 53 | 1994 | 2.657974 | 0.22050 | 0 | 117 | 967 | 12.099276 | 0.11370 | 0 | 147 | 384 | 38.28125 | 0.3856 | 0 | 264 | 1351 | 19.54108 | 0.1827 | 0 | 317 | 2477 | 12.797739 | 0.6460 | 0 | 127 | 3673 | 3.457664 | 0.2308 | 0 | 464 | 12.56091 | 0.3088 | 0 | 929 | 25.14889 | 0.7080 | 0 | 473 | 2744 | 17.23761 | 0.6211 | 0 | 263 | 975 | 26.97436 | 0.8234 | 1 | 128 | 3586 | 3.5694367 | 0.70770 | 0 | 1331 | 3694 | 36.03140 | 0.5515 | 0 | 1464 | 26 | 1.7759563 | 0.3675 | 0 | 14 | 0.9562842 | 0.5389 | 0 | 35 | 1351 | 2.5906736 | 0.60550 | 0 | 42 | 1351 | 3.108808 | 0.3415 | 0 | 0 | 3694 | 0.000000 | 0.1831 | 0 | 1.86330 | 0.3063 | 0 | 3.16900 | 0.8380 | 1 | 0.5515 | 0.5468 | 0 | 2.03650 | 0.26830 | 0 | 7.62030 | 0.4460 | 1 |
01001020400 | 01 | 001 | 020400 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 4840 | 1957 | 1839 | 501 | 4840 | 10.35124 | 0.2177 | 0 | 101 | 2129 | 4.744011 | 0.2447 | 0 | 310 | 1549 | 20.01291 | 0.17080 | 0 | 89 | 290 | 30.68966 | 0.2044 | 0 | 399 | 1839 | 21.69657 | 0.10540 | 0 | 274 | 3280 | 8.353658 | 0.3205 | 0 | 399 | 4293 | 9.294200 | 0.3171 | 0 | 955 | 19.731405 | 0.8643 | 1 | 1195 | 24.69008 | 0.5530 | 0 | 625 | 3328 | 18.78005 | 0.7233 | 0 | 152 | 1374 | 11.062591 | 0.34710 | 0 | 10 | 4537 | 0.2204100 | 0.22560 | 0 | 297 | 4840 | 6.136364 | 0.1647 | 0 | 1957 | 33 | 1.6862545 | 0.3843 | 0 | 25 | 1.2774655 | 0.5516 | 0 | 14 | 1839 | 0.7612833 | 0.3564 | 0 | 19 | 1839 | 1.033170 | 0.1127 | 0 | 0 | 4840 | 0 | 0.364 | 0 | 1.20540 | 0.13470 | 0 | 2.71330 | 0.6129 | 1 | 0.1647 | 0.1632 | 0 | 1.7690 | 0.1591 | 0 | 5.85240 | 0.1954 | 1 | 3539 | 1741 | 1636 | 503 | 3539 | 14.21305 | 0.3472 | 0 | 39 | 1658 | 2.352232 | 0.17990 | 0 | 219 | 1290 | 16.976744 | 0.30880 | 0 | 74 | 346 | 21.38728 | 0.1037 | 0 | 293 | 1636 | 17.90954 | 0.1333 | 0 | 173 | 2775 | 6.234234 | 0.3351 | 0 | 169 | 3529 | 4.788892 | 0.3448 | 0 | 969 | 27.38062 | 0.9225 | 1 | 510 | 14.41085 | 0.1208 | 0 | 670 | 3019 | 22.19278 | 0.8194 | 1 | 148 | 1137 | 13.01671 | 0.4541 | 0 | 89 | 3409 | 2.6107363 | 0.64690 | 0 | 454 | 3539 | 12.82848 | 0.2364 | 0 | 1741 | 143 | 8.2136703 | 0.6028 | 0 | 0 | 0.0000000 | 0.2186 | 0 | 10 | 1636 | 0.6112469 | 0.28340 | 0 | 72 | 1636 | 4.400978 | 0.4538 | 0 | 0 | 3539 | 0.000000 | 0.1831 | 0 | 1.34030 | 0.1575 | 0 | 2.96370 | 0.7496 | 2 | 0.2364 | 0.2344 | 0 | 1.74170 | 0.16270 | 0 | 6.28210 | 0.2389 | 2 |
01001020500 | 01 | 001 | 020500 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 9938 | 3969 | 3741 | 1096 | 9938 | 11.02838 | 0.2364 | 0 | 188 | 4937 | 3.807981 | 0.1577 | 0 | 426 | 2406 | 17.70574 | 0.11050 | 0 | 528 | 1335 | 39.55056 | 0.3753 | 0 | 954 | 3741 | 25.50120 | 0.20140 | 0 | 293 | 5983 | 4.897209 | 0.1655 | 0 | 740 | 10110 | 7.319486 | 0.2211 | 0 | 837 | 8.422218 | 0.2408 | 0 | 3012 | 30.30791 | 0.8455 | 1 | 759 | 7155 | 10.60797 | 0.2668 | 0 | 476 | 2529 | 18.821669 | 0.63540 | 0 | 78 | 9297 | 0.8389803 | 0.41110 | 0 | 1970 | 9938 | 19.822902 | 0.4330 | 0 | 3969 | 306 | 7.7097506 | 0.6153 | 0 | 0 | 0.0000000 | 0.2198 | 0 | 7 | 3741 | 0.1871157 | 0.2535 | 0 | 223 | 3741 | 5.960973 | 0.5483 | 0 | 0 | 9938 | 0 | 0.364 | 0 | 0.98210 | 0.08468 | 0 | 2.39960 | 0.4381 | 1 | 0.4330 | 0.4290 | 0 | 2.0009 | 0.2430 | 0 | 5.81560 | 0.1905 | 1 | 10674 | 4504 | 4424 | 1626 | 10509 | 15.47245 | 0.3851 | 0 | 81 | 5048 | 1.604596 | 0.09431 | 0 | 321 | 2299 | 13.962592 | 0.17970 | 0 | 711 | 2125 | 33.45882 | 0.2836 | 0 | 1032 | 4424 | 23.32731 | 0.3109 | 0 | 531 | 6816 | 7.790493 | 0.4251 | 0 | 301 | 10046 | 2.996217 | 0.1894 | 0 | 1613 | 15.11149 | 0.4553 | 0 | 2765 | 25.90407 | 0.7494 | 0 | 1124 | 7281 | 15.43744 | 0.5253 | 0 | 342 | 2912 | 11.74451 | 0.4019 | 0 | 52 | 9920 | 0.5241935 | 0.35230 | 0 | 2603 | 10674 | 24.38636 | 0.4160 | 0 | 4504 | 703 | 15.6083481 | 0.7378 | 0 | 29 | 0.6438721 | 0.5037 | 0 | 37 | 4424 | 0.8363472 | 0.33420 | 0 | 207 | 4424 | 4.679023 | 0.4754 | 0 | 176 | 10674 | 1.648866 | 0.7598 | 1 | 1.40481 | 0.1743 | 0 | 2.48420 | 0.4802 | 0 | 0.4160 | 0.4125 | 0 | 2.81090 | 0.63730 | 1 | 7.11591 | 0.3654 | 1 |
01001020600 | 01 | 001 | 020600 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 3402 | 1456 | 1308 | 735 | 3402 | 21.60494 | 0.5199 | 0 | 134 | 1720 | 7.790698 | 0.5436 | 0 | 242 | 1032 | 23.44961 | 0.28010 | 0 | 62 | 276 | 22.46377 | 0.1035 | 0 | 304 | 1308 | 23.24159 | 0.14070 | 0 | 301 | 2151 | 13.993491 | 0.5510 | 0 | 355 | 3445 | 10.304790 | 0.3656 | 0 | 386 | 11.346267 | 0.4232 | 0 | 931 | 27.36626 | 0.7200 | 0 | 440 | 2439 | 18.04018 | 0.6912 | 0 | 143 | 924 | 15.476190 | 0.52900 | 0 | 4 | 3254 | 0.1229256 | 0.19840 | 0 | 723 | 3402 | 21.252205 | 0.4519 | 0 | 1456 | 18 | 1.2362637 | 0.3507 | 0 | 433 | 29.7390110 | 0.9468 | 1 | 16 | 1308 | 1.2232416 | 0.4493 | 0 | 28 | 1308 | 2.140673 | 0.2298 | 0 | 0 | 3402 | 0 | 0.364 | 0 | 2.12080 | 0.39510 | 0 | 2.56180 | 0.5288 | 0 | 0.4519 | 0.4477 | 0 | 2.3406 | 0.4048 | 1 | 7.47510 | 0.4314 | 1 | 3536 | 1464 | 1330 | 1279 | 3523 | 36.30429 | 0.8215 | 1 | 34 | 1223 | 2.780049 | 0.23780 | 0 | 321 | 1111 | 28.892889 | 0.75870 | 1 | 67 | 219 | 30.59361 | 0.2305 | 0 | 388 | 1330 | 29.17293 | 0.5075 | 0 | 306 | 2380 | 12.857143 | 0.6480 | 0 | 415 | 3496 | 11.870709 | 0.7535 | 1 | 547 | 15.46946 | 0.4760 | 0 | 982 | 27.77149 | 0.8327 | 1 | 729 | 2514 | 28.99761 | 0.9488 | 1 | 95 | 880 | 10.79545 | 0.3601 | 0 | 0 | 3394 | 0.0000000 | 0.09479 | 0 | 985 | 3536 | 27.85633 | 0.4608 | 0 | 1464 | 0 | 0.0000000 | 0.1079 | 0 | 364 | 24.8633880 | 0.9300 | 1 | 0 | 1330 | 0.0000000 | 0.09796 | 0 | 17 | 1330 | 1.278196 | 0.1463 | 0 | 0 | 3536 | 0.000000 | 0.1831 | 0 | 2.96830 | 0.6434 | 2 | 2.71239 | 0.6156 | 2 | 0.4608 | 0.4569 | 0 | 1.46526 | 0.08976 | 1 | 7.60675 | 0.4440 | 5 |
Now let’s process our NMTC data. We will begin by exploring the details of our data sets:
colnames(orig_nmtc)
[1] "2010 Census Tract Number FIPS code. GEOID"
[2] "OMB Metro/Non-metro Designation, July 2015 (OMB 15-01)"
[3] "Does Census Tract Qualify For NMTC Low-Income Community (LIC) on Poverty or Income Criteria?"
[4] "Census Tract Poverty Rate % (2011-2015 ACS)"
[5] "Does Census Tract Qualify on Poverty Criteria>=20%?"
[6] "Census Tract Percent of Benchmarked Median Family Income (%) 2011-2015 ACS"
[7] "Does Census Tract Qualify on Median Family Income Criteria<=80%?"
[8] "Census Tract Unemployment Rate (%) 2011-2015"
[9] "County Code"
[10] "State Abbreviation"
[11] "State Name"
[12] "County Name"
[13] "Census Tract Unemployment to National Unemployment Ratio"
[14] "Is Tract Unemployment to National Unemployment Ratio >1.5?"
[15] "Population for whom poverty status is determined 2011-2015 ACS"
Let’s rename a few columns to make them easier for processing:
orig_nmtc_df <- orig_nmtc %>%
rename("GEOID10" = "2010 Census Tract Number FIPS code. GEOID",
"nmtc_eligibility_orig" = "Does Census Tract Qualify For NMTC Low-Income Community (LIC) on Poverty or Income Criteria?")
orig_nmtc_df %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID10 | OMB Metro/Non-metro Designation, July 2015 (OMB 15-01) | nmtc_eligibility_orig | Census Tract Poverty Rate % (2011-2015 ACS) | Does Census Tract Qualify on Poverty Criteria>=20%? | Census Tract Percent of Benchmarked Median Family Income (%) 2011-2015 ACS | Does Census Tract Qualify on Median Family Income Criteria<=80%? | Census Tract Unemployment Rate (%) 2011-2015 | County Code | State Abbreviation | State Name | County Name | Census Tract Unemployment to National Unemployment Ratio | Is Tract Unemployment to National Unemployment Ratio >1.5? | Population for whom poverty status is determined 2011-2015 ACS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
01001020100 | Metropolitan | No | 8.1 | No | 122.930646878856 | No | 5.4 | 01001 | AL | Alabama | Autauga | 0.6506024096385542 | No | 1948 |
01001020200 | Metropolitan | Yes | 25.5 | Yes | 82.402258244451573 | No | 13.3 | 01001 | AL | Alabama | Autauga | 1.6024096385542168 | Yes | 1983 |
01001020300 | Metropolitan | No | 12.7 | No | 94.261422220719723 | No | 6.2 | 01001 | AL | Alabama | Autauga | 0.74698795180722888 | No | 2968 |
01001020400 | Metropolitan | No | 2.1 | No | 116.82358310373388 | No | 10.8 | 01001 | AL | Alabama | Autauga | 1.3012048192771084 | No | 4423 |
01001020500 | Metropolitan | No | 11.4 | No | 127.74293876033198 | No | 4.2 | 01001 | AL | Alabama | Autauga | 0.50602409638554213 | No | 10563 |
01001020600 | Metropolitan | No | 14.4 | No | 111.98255607579317 | No | 10.9 | 01001 | AL | Alabama | Autauga | 1.3132530120481927 | No | 3851 |
We also have additional census tracts that have been deemed eligible for the program due to high migration:
colnames(high_migration_nmtc)
[1] "2010 Census Tract Number FIPS code GEOID"
[2] "20-year County population loss 1990-2010 census"
[3] "% Median Family Income (MFI) / Area Income 2011-2015 (between 80%-85% MFI)"
We will also rename the GEOID column in this data set:
high_migration_nmtc_df <- high_migration_nmtc %>% rename("GEOID10" = "2010 Census Tract Number FIPS code GEOID")
high_migration_nmtc_df %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID10 | 20-year County population loss 1990-2010 census | % Median Family Income (MFI) / Area Income 2011-2015 (between 80%-85% MFI) |
---|---|---|
01087231601 | -0.1394416 | 82.06754 |
05039970300 | -0.1558144 | 84.78236 |
08017960600 | -0.2340426 | 84.36239 |
17067953800 | -0.1061620 | 80.36788 |
17067954200 | -0.1061620 | 84.48551 |
17067954300 | -0.1061620 | 84.44497 |
If we look back at our original data set, we can see that it doesn’t have the census tracts in the high migration data set coded as being eligible for the NMTC since eligibility for these tracts were added at a later date. See below as an example:
# See original doesn't have high migration tracts coded as eligible
orig_nmtc_df %>% filter(GEOID10 == "01087231601") %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID10 | OMB Metro/Non-metro Designation, July 2015 (OMB 15-01) | nmtc_eligibility_orig | Census Tract Poverty Rate % (2011-2015 ACS) | Does Census Tract Qualify on Poverty Criteria>=20%? | Census Tract Percent of Benchmarked Median Family Income (%) 2011-2015 ACS | Does Census Tract Qualify on Median Family Income Criteria<=80%? | Census Tract Unemployment Rate (%) 2011-2015 | County Code | State Abbreviation | State Name | County Name | Census Tract Unemployment to National Unemployment Ratio | Is Tract Unemployment to National Unemployment Ratio >1.5? | Population for whom poverty status is determined 2011-2015 ACS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
01087231601 | Non-Metropolitan | No | 16.2 | No | 82.067544858242542 | No | 11.3 | 01087 | AL | Alabama | Macon | 1.3614457831325302 | No | 888 |
In order to address this, we need to update eligibility in our original data set for the census tracts in the high migration of data set:
# Add column to label tracts as high migration
high_migration_nmtc_df <- high_migration_nmtc_df %>% mutate(high_migration = "Yes")
# Join to original column
orig_nmtc_df <- left_join(orig_nmtc_df, high_migration_nmtc_df, join_by(GEOID10 == GEOID10))
# Update eligibility column with coalesce()
nmtc_df <- orig_nmtc_df %>%
mutate(nmtc_eligibility = coalesce(high_migration, nmtc_eligibility_orig))
nmtc_df %>% filter(GEOID10 == "01087231601") %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID10 | OMB Metro/Non-metro Designation, July 2015 (OMB 15-01) | nmtc_eligibility_orig | Census Tract Poverty Rate % (2011-2015 ACS) | Does Census Tract Qualify on Poverty Criteria>=20%? | Census Tract Percent of Benchmarked Median Family Income (%) 2011-2015 ACS | Does Census Tract Qualify on Median Family Income Criteria<=80%? | Census Tract Unemployment Rate (%) 2011-2015 | County Code | State Abbreviation | State Name | County Name | Census Tract Unemployment to National Unemployment Ratio | Is Tract Unemployment to National Unemployment Ratio >1.5? | Population for whom poverty status is determined 2011-2015 ACS | 20-year County population loss 1990-2010 census | % Median Family Income (MFI) / Area Income 2011-2015 (between 80%-85% MFI) | high_migration | nmtc_eligibility |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
01087231601 | Non-Metropolitan | No | 16.2 | No | 82.067544858242542 | No | 11.3 | 01087 | AL | Alabama | Macon | 1.3614457831325302 | No | 888 | -0.1394416 | 82.06754 | Yes | Yes |
Create a data set only of our NMTC eligible census tracts:
GEOID10 | nmtc_eligibility | County Code | County Name | State Abbreviation | State Name |
---|---|---|---|---|---|
01001020200 | Yes | 01001 | Autauga | AL | Alabama |
01001020700 | Yes | 01001 | Autauga | AL | Alabama |
01001021100 | Yes | 01001 | Autauga | AL | Alabama |
01003010200 | Yes | 01003 | Baldwin | AL | Alabama |
01003010500 | Yes | 01003 | Baldwin | AL | Alabama |
01003010600 | Yes | 01003 | Baldwin | AL | Alabama |
To merge to our SVI data, we only need the eligibility flag and the GEOID so we will limit our data set to these columns:
# A tibble: 6 × 2
GEOID10 nmtc_eligibility
<chr> <chr>
1 01001020200 Yes
2 01001020700 Yes
3 01001021100 Yes
4 01003010200 Yes
5 01003010500 Yes
6 01003010600 Yes
Now let’s look at our NMTC award data:
nmtc_awards_data %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
Project ID | 2010 Census Tract | Metro/Non-Metro, 2010 Census | Origination Year | Community Development Entity (CDE) Name | Project QLICI Amount | Estimated Total Project Cost | City | State | Zip Code | QALICB Type | Multi-CDE | Multi-Tract Project |
---|---|---|---|---|---|---|---|---|---|---|---|---|
AK0001 | 2070000100 | Non-Metropolitan | 2008 | Alaska Growth Capital BIDCO, Inc. | 300000 | 300000 | Aleknagik | Alaska | 99555 | NRE | NO | NO |
AK0002 | 2020001000 | Metropolitan | 2006 | Alaska Growth Capital BIDCO, Inc. | 1008750 | 1345000 | Anchorage | Alaska | 99501 | NRE | NO | NO |
AK0003 | 2020000600 | Metropolitan | 2006 | HEDC New Markets, Inc | 5061506 | 8694457 | Anchorage | Alaska | 99508 | NRE | NO | NO |
AK0004 | 2020001000 | Metropolitan | 2006 | Alaska Growth Capital BIDCO, Inc. | 187500 | 250000 | Anchorage | Alaska | 99501 | NRE | NO | NO |
AK0006 | 2020001802 | Metropolitan | 2006 | Alaska Growth Capital BIDCO, Inc. | 750000 | 1180000 | Anchorage | Alaska | 99507 | NRE | NO | NO |
AK0007 | 2020001900 | Metropolitan | 2006 | Alaska Growth Capital BIDCO, Inc. | 127500 | 150000 | Anchorage | Alaska | 99503 | NRE | NO | NO |
Here we can see that our 2010 Census Tract
column is missing leading zeroes. We need to fix this to allow for joining with our SVI data. To do this, we can pad our census tract data column to 11 to ensure that the leading zeroes are added back:
Project ID | GEOID10 | Metro/Non-Metro, 2010 Census | Origination Year | Community Development Entity (CDE) Name | Project QLICI Amount | Estimated Total Project Cost | City | State | Zip Code | QALICB Type | Multi-CDE | Multi-Tract Project |
---|---|---|---|---|---|---|---|---|---|---|---|---|
AK0001 | 02070000100 | Non-Metropolitan | 2008 | Alaska Growth Capital BIDCO, Inc. | 300000 | 300000 | Aleknagik | Alaska | 99555 | NRE | NO | NO |
AK0002 | 02020001000 | Metropolitan | 2006 | Alaska Growth Capital BIDCO, Inc. | 1008750 | 1345000 | Anchorage | Alaska | 99501 | NRE | NO | NO |
AK0003 | 02020000600 | Metropolitan | 2006 | HEDC New Markets, Inc | 5061506 | 8694457 | Anchorage | Alaska | 99508 | NRE | NO | NO |
AK0004 | 02020001000 | Metropolitan | 2006 | Alaska Growth Capital BIDCO, Inc. | 187500 | 250000 | Anchorage | Alaska | 99501 | NRE | NO | NO |
AK0006 | 02020001802 | Metropolitan | 2006 | Alaska Growth Capital BIDCO, Inc. | 750000 | 1180000 | Anchorage | Alaska | 99507 | NRE | NO | NO |
AK0007 | 02020001900 | Metropolitan | 2006 | Alaska Growth Capital BIDCO, Inc. | 127500 | 150000 | Anchorage | Alaska | 99503 | NRE | NO | NO |
Project ID | GEOID10 | Metro/Non-Metro, 2010 Census | Origination Year | Community Development Entity (CDE) Name | Project QLICI Amount | Estimated Total Project Cost | City | State | Zip Code | QALICB Type | Multi-CDE | Multi-Tract Project | zip_code |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AK0001 | 02070000100 | Non-Metropolitan | 2008 | Alaska Growth Capital BIDCO, Inc. | 300000 | 300000 | Aleknagik | Alaska | 99555 | NRE | NO | NO | 99555 |
AK0002 | 02020001000 | Metropolitan | 2006 | Alaska Growth Capital BIDCO, Inc. | 1008750 | 1345000 | Anchorage | Alaska | 99501 | NRE | NO | NO | 99501 |
AK0003 | 02020000600 | Metropolitan | 2006 | HEDC New Markets, Inc | 5061506 | 8694457 | Anchorage | Alaska | 99508 | NRE | NO | NO | 99508 |
AK0004 | 02020001000 | Metropolitan | 2006 | Alaska Growth Capital BIDCO, Inc. | 187500 | 250000 | Anchorage | Alaska | 99501 | NRE | NO | NO | 99501 |
AK0006 | 02020001802 | Metropolitan | 2006 | Alaska Growth Capital BIDCO, Inc. | 750000 | 1180000 | Anchorage | Alaska | 99507 | NRE | NO | NO | 99507 |
AK0007 | 02020001900 | Metropolitan | 2006 | Alaska Growth Capital BIDCO, Inc. | 127500 | 150000 | Anchorage | Alaska | 99503 | NRE | NO | NO | 99503 |
Now that we have our awards data formatted, we can view the years of data before 2010:
# A tibble: 10 × 1
`Origination Year`
<dbl>
1 2008
2 2006
3 2007
4 2009
5 2010
6 2004
7 2003
8 2005
9 2002
10 2001
Now let’s find the number of projects in each tract before 2010:
# View tracts
nmtc_awards_pre2010 <- nmtc_awards %>%
filter(`Origination Year` <= 2010) %>%
count(GEOID10) %>%
rename("pre10_nmtc_project_cnt" = "n")
nmtc_awards_dollars_pre2010 <- nmtc_awards %>%
filter(`Origination Year` <= 2010) %>%
group_by(GEOID10) %>%
summarise(pre10_nmtc_dollars = sum(`Project QLICI Amount`, na.rm = TRUE))
nmtc_awards_pre2010 <- left_join(nmtc_awards_pre2010,
nmtc_awards_dollars_pre2010,
join_by(GEOID10 == GEOID10))
nmtc_awards_pre2010$pre10_nmtc_dollars_formatted <- scales::dollar_format()(nmtc_awards_pre2010$pre10_nmtc_dollars)
nmtc_awards_pre2010 %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID10 | pre10_nmtc_project_cnt | pre10_nmtc_dollars | pre10_nmtc_dollars_formatted |
---|---|---|---|
01059973500 | 1 | 5000000 | $5,000,000 |
01069041400 | 1 | 2500000 | $2,500,000 |
01073001902 | 1 | 14400000 | $14,400,000 |
01073002700 | 1 | 1000000 | $1,000,000 |
01073004200 | 1 | 5908129 | $5,908,129 |
01073004500 | 3 | 37950000 | $37,950,000 |
Let’s view the years after 2010:
# A tibble: 11 × 1
`Origination Year`
<dbl>
1 2011
2 2012
3 2017
4 2013
5 2014
6 2016
7 2015
8 2018
9 2019
10 2020
11 2021
Now let’s view what states have data for years 2011-2020 and we can see we have all 50 and D.C.:
State | n |
---|---|
Alaska | 1 |
Alabama | 2 |
Arkansas | 3 |
Arizona | 4 |
California | 5 |
Oregon | 6 |
Colorado | 7 |
Connecticut | 8 |
Delaware | 9 |
District of Columbia | 10 |
Florida | 11 |
Illinois | 12 |
Georgia | 13 |
Oklahoma | 14 |
Hawaii | 15 |
Iowa | 16 |
Idaho | 17 |
Missouri | 18 |
New York | 19 |
Indiana | 20 |
Kansas | 21 |
Kentucky | 22 |
Louisiana | 23 |
Massachusetts | 24 |
New Jersey | 25 |
Maryland | 26 |
Maine | 27 |
Michigan | 28 |
Minnesota | 29 |
Mississippi | 30 |
Montana | 31 |
North Carolina | 32 |
North Dakota | 33 |
Nebraska | 34 |
New Hampshire | 35 |
New Mexico | 36 |
Nevada | 37 |
Ohio | 38 |
Pennsylvania | 39 |
Rhode Island | 40 |
South Carolina | 41 |
South Dakota | 42 |
Tennessee | 43 |
Texas | 44 |
Utah | 45 |
Virginia | 46 |
Vermont | 47 |
Washington | 48 |
Wisconsin | 49 |
West Virginia | 50 |
Wyoming | 51 |
nmtc_awards_post2010 <- nmtc_awards %>%
filter(`Origination Year` > 2010 & `Origination Year` <= 2020) %>%
count(GEOID10) %>%
rename("post10_nmtc_project_cnt" = "n")
nmtc_awards_dollars_post2010 <- nmtc_awards %>%
filter(`Origination Year` > 2010 & `Origination Year` <= 2020) %>%
group_by(GEOID10) %>%
summarise(post10_nmtc_dollars = sum(`Project QLICI Amount`, na.rm = TRUE))
nmtc_awards_post2010 <- left_join(nmtc_awards_post2010,
nmtc_awards_dollars_post2010,
join_by(GEOID10 == GEOID10))
nmtc_awards_post2010$post10_nmtc_dollars_formatted <- scales::dollar_format()(nmtc_awards_post2010$post10_nmtc_dollars)
nmtc_awards_post2010 %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID10 | post10_nmtc_project_cnt | post10_nmtc_dollars | post10_nmtc_dollars_formatted |
---|---|---|---|
0000000000. | 3 | 24200000 | $24,200,000 |
01003010200 | 1 | 408000 | $408,000 |
01003010300 | 1 | 9880000 | $9,880,000 |
01003010600 | 1 | 8000000 | $8,000,000 |
01003010904 | 1 | 22460000 | $22,460,000 |
01003011501 | 6 | 37147460 | $37,147,460 |
Now that all of our SVI data is loaded, we can merge the NMTC data with our SVI data:
# Divisional data
svi_divisional %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt | FIPS_st | FIPS_county | FIPS_tract | state | state_name | county | region_number | region | division_number | division | E_TOTPOP_10 | E_HU_10 | E_HH_10 | E_POV150_10 | ET_POVSTATUS_10 | EP_POV150_10 | EPL_POV150_10 | F_POV150_10 | E_UNEMP_10 | ET_EMPSTATUS_10 | EP_UNEMP_10 | EPL_UNEMP_10 | F_UNEMP_10 | E_HBURD_OWN_10 | ET_HOUSINGCOST_OWN_10 | EP_HBURD_OWN_10 | EPL_HBURD_OWN_10 | F_HBURD_OWN_10 | E_HBURD_RENT_10 | ET_HOUSINGCOST_RENT_10 | EP_HBURD_RENT_10 | EPL_HBURD_RENT_10 | F_HBURD_RENT_10 | E_HBURD_10 | ET_HOUSINGCOST_10 | EP_HBURD_10 | EPL_HBURD_10 | F_HBURD_10 | E_NOHSDP_10 | ET_EDSTATUS_10 | EP_NOHSDP_10 | EPL_NOHSDP_10 | F_NOHSDP_10 | E_UNINSUR_12 | ET_INSURSTATUS_12 | EP_UNINSUR_12 | EPL_UNINSUR_12 | F_UNINSUR_12 | E_AGE65_10 | EP_AGE65_10 | EPL_AGE65_10 | F_AGE65_10 | E_AGE17_10 | EP_AGE17_10 | EPL_AGE17_10 | F_AGE17_10 | E_DISABL_12 | ET_DISABLSTATUS_12 | EP_DISABL_12 | EPL_DISABL_12 | F_DISABL_12 | E_SNGPNT_10 | ET_FAMILIES_10 | EP_SNGPNT_10 | EPL_SNGPNT_10 | F_SNGPNT_10 | E_LIMENG_10 | ET_POPAGE5UP_10 | EP_LIMENG_10 | EPL_LIMENG_10 | F_LIMENG_10 | E_MINRTY_10 | ET_POPETHRACE_10 | EP_MINRTY_10 | EPL_MINRTY_10 | F_MINRTY_10 | E_STRHU_10 | E_MUNIT_10 | EP_MUNIT_10 | EPL_MUNIT_10 | F_MUNIT_10 | E_MOBILE_10 | EP_MOBILE_10 | EPL_MOBILE_10 | F_MOBILE_10 | E_CROWD_10 | ET_OCCUPANTS_10 | EP_CROWD_10 | EPL_CROWD_10 | F_CROWD_10 | E_NOVEH_10 | ET_KNOWNVEH_10 | EP_NOVEH_10 | EPL_NOVEH_10 | F_NOVEH_10 | E_GROUPQ_10 | ET_HHTYPE_10 | EP_GROUPQ_10 | EPL_GROUPQ_10 | F_GROUPQ_10 | SPL_THEME1_10 | RPL_THEME1_10 | F_THEME1_10 | SPL_THEME2_10 | RPL_THEME2_10 | F_THEME2_10 | SPL_THEME3_10 | RPL_THEME3_10 | F_THEME3_10 | SPL_THEME4_10 | RPL_THEME4_10 | F_THEME4_10 | SPL_THEMES_10 | RPL_THEMES_10 | F_TOTAL_10 | E_TOTPOP_20 | E_HU_20 | E_HH_20 | E_POV150_20 | ET_POVSTATUS_20 | EP_POV150_20 | EPL_POV150_20 | F_POV150_20 | E_UNEMP_20 | ET_EMPSTATUS_20 | EP_UNEMP_20 | EPL_UNEMP_20 | F_UNEMP_20 | E_HBURD_OWN_20 | ET_HOUSINGCOST_OWN_20 | EP_HBURD_OWN_20 | EPL_HBURD_OWN_20 | F_HBURD_OWN_20 | E_HBURD_RENT_20 | ET_HOUSINGCOST_RENT_20 | EP_HBURD_RENT_20 | EPL_HBURD_RENT_20 | F_HBURD_RENT_20 | E_HBURD_20 | ET_HOUSINGCOST_20 | EP_HBURD_20 | EPL_HBURD_20 | F_HBURD_20 | E_NOHSDP_20 | ET_EDSTATUS_20 | EP_NOHSDP_20 | EPL_NOHSDP_20 | F_NOHSDP_20 | E_UNINSUR_20 | ET_INSURSTATUS_20 | EP_UNINSUR_20 | EPL_UNINSUR_20 | F_UNINSUR_20 | E_AGE65_20 | EP_AGE65_20 | EPL_AGE65_20 | F_AGE65_20 | E_AGE17_20 | EP_AGE17_20 | EPL_AGE17_20 | F_AGE17_20 | E_DISABL_20 | ET_DISABLSTATUS_20 | EP_DISABL_20 | EPL_DISABL_20 | F_DISABL_20 | E_SNGPNT_20 | ET_FAMILIES_20 | EP_SNGPNT_20 | EPL_SNGPNT_20 | F_SNGPNT_20 | E_LIMENG_20 | ET_POPAGE5UP_20 | EP_LIMENG_20 | EPL_LIMENG_20 | F_LIMENG_20 | E_MINRTY_20 | ET_POPETHRACE_20 | EP_MINRTY_20 | EPL_MINRTY_20 | F_MINRTY_20 | E_STRHU_20 | E_MUNIT_20 | EP_MUNIT_20 | EPL_MUNIT_20 | F_MUNIT_20 | E_MOBILE_20 | EP_MOBILE_20 | EPL_MOBILE_20 | F_MOBILE_20 | E_CROWD_20 | ET_OCCUPANTS_20 | EP_CROWD_20 | EPL_CROWD_20 | F_CROWD_20 | E_NOVEH_20 | ET_KNOWNVEH_20 | EP_NOVEH_20 | EPL_NOVEH_20 | F_NOVEH_20 | E_GROUPQ_20 | ET_HHTYPE_20 | EP_GROUPQ_20 | EPL_GROUPQ_20 | F_GROUPQ_20 | SPL_THEME1_20 | RPL_THEME1_20 | F_THEME1_20 | SPL_THEME2_20 | RPL_THEME2_20 | F_THEME2_20 | SPL_THEME3_20 | RPL_THEME3_20 | F_THEME3_20 | SPL_THEME4_20 | RPL_THEME4_20 | F_THEME4_20 | SPL_THEMES_20 | RPL_THEMES_20 | F_TOTAL_20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
34001000100 | 34 | 001 | 000100 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 2907 | 1088 | 983 | 1127 | 2907 | 38.76849 | 0.8482 | 1 | 144 | 1433 | 10.048849 | 0.7544 | 1 | 280 | 435 | 64.36782 | 0.9529 | 1 | 204 | 548 | 37.22628 | 0.2998 | 0 | 484 | 983 | 49.23703 | 0.7813 | 1 | 468 | 1759 | 26.60603 | 0.8634 | 1 | 532 | 2543 | 20.92017 | 0.8978 | 1 | 250 | 8.599931 | 0.1777 | 0 | 944 | 32.47334 | 0.94170 | 1 | 186 | 1851 | 10.04862 | 0.2706 | 0 | 266 | 678 | 39.233038 | 0.8981 | 1 | 177 | 2611 | 6.779012 | 0.7778 | 1 | 1928 | 2907 | 66.32267 | 0.7743 | 1 | 1088 | 113 | 10.386029 | 0.6229 | 0 | 9 | 0.8272059 | 0.7223 | 0 | 80 | 983 | 8.138352 | 0.8657 | 1 | 265 | 983 | 26.95829 | 0.7354 | 0 | 0 | 2907 | 0.000000 | 0.3512 | 0 | 4.1451 | 0.8935 | 5 | 3.06590 | 0.7944 | 3 | 0.7743 | 0.7667 | 1 | 3.2975 | 0.8414 | 1 | 11.28280 | 0.8862 | 10 | 2157 | 941 | 784 | 1182 | 2157 | 54.79833 | 0.9571 | 1 | 242 | 1058 | 22.873346 | 0.9922 | 1 | 215 | 342 | 62.86550 | 0.9780 | 1 | 316 | 442 | 71.49321 | 0.9481 | 1 | 531 | 784 | 67.72959 | 0.9893 | 1 | 396 | 1274 | 31.08320 | 0.9497 | 1 | 266 | 2157 | 12.331943 | 0.9041 | 1 | 185 | 8.576727 | 0.09430 | 0 | 552 | 25.59110 | 0.8128 | 1 | 297 | 1605 | 18.504673 | 0.74880 | 0 | 83 | 510 | 16.27451 | 0.6090 | 0 | 251 | 2020 | 12.425743 | 0.8710 | 1 | 1852 | 2157 | 85.85999 | 0.8476 | 1 | 941 | 118 | 12.5398512 | 0.6385 | 0 | 0 | 0.0000000 | 0.3216 | 0 | 67 | 784 | 8.545918 | 0.8657 | 1 | 212 | 784 | 27.04082 | 0.7502 | 1 | 0 | 2157 | 0.0000000 | 0.1517 | 0 | 4.7924 | 0.9850 | 5 | 3.13590 | 0.8217 | 2 | 0.8476 | 0.8400 | 1 | 2.7277 | 0.6085 | 2 | 11.50360 | 0.9104 | 10 |
34001000200 | 34 | 001 | 000200 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 3189 | 2217 | 1473 | 519 | 3189 | 16.27469 | 0.4806 | 0 | 109 | 1558 | 6.996149 | 0.5179 | 0 | 573 | 955 | 60.00000 | 0.9323 | 1 | 199 | 518 | 38.41699 | 0.3261 | 0 | 772 | 1473 | 52.41005 | 0.8418 | 1 | 405 | 2579 | 15.70376 | 0.6491 | 0 | 484 | 3547 | 13.64533 | 0.7154 | 0 | 847 | 26.560050 | 0.9629 | 1 | 436 | 13.67200 | 0.08181 | 0 | 608 | 3005 | 20.23295 | 0.8466 | 1 | 42 | 857 | 4.900817 | 0.1204 | 0 | 422 | 3072 | 13.736979 | 0.8799 | 1 | 1792 | 3189 | 56.19316 | 0.7390 | 0 | 2217 | 901 | 40.640505 | 0.8693 | 1 | 0 | 0.0000000 | 0.3251 | 0 | 48 | 1473 | 3.258656 | 0.7064 | 0 | 250 | 1473 | 16.97217 | 0.6444 | 0 | 0 | 3189 | 0.000000 | 0.3512 | 0 | 3.2048 | 0.6963 | 1 | 2.89161 | 0.7231 | 3 | 0.7390 | 0.7317 | 0 | 2.8964 | 0.6887 | 1 | 9.73181 | 0.7340 | 5 | 3510 | 2046 | 1353 | 1021 | 3510 | 29.08832 | 0.7682 | 1 | 121 | 1852 | 6.533477 | 0.6717 | 0 | 343 | 696 | 49.28161 | 0.9273 | 1 | 416 | 657 | 63.31811 | 0.8696 | 1 | 759 | 1353 | 56.09756 | 0.9321 | 1 | 553 | 2338 | 23.65269 | 0.8871 | 1 | 354 | 3510 | 10.085470 | 0.8530 | 1 | 643 | 18.319088 | 0.60310 | 0 | 1002 | 28.54701 | 0.9055 | 1 | 450 | 2508 | 17.942584 | 0.72330 | 0 | 237 | 786 | 30.15267 | 0.8539 | 1 | 534 | 3375 | 15.822222 | 0.9062 | 1 | 2534 | 3510 | 72.19373 | 0.7818 | 1 | 2046 | 906 | 44.2815249 | 0.8690 | 1 | 0 | 0.0000000 | 0.3216 | 0 | 119 | 1353 | 8.795270 | 0.8711 | 1 | 324 | 1353 | 23.94678 | 0.7255 | 0 | 0 | 3510 | 0.0000000 | 0.1517 | 0 | 4.1121 | 0.9003 | 4 | 3.99200 | 0.9781 | 3 | 0.7818 | 0.7747 | 1 | 2.9389 | 0.7011 | 2 | 11.82480 | 0.9310 | 10 |
34001000300 | 34 | 001 | 000300 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 3997 | 1823 | 1357 | 1401 | 3968 | 35.30746 | 0.8164 | 1 | 382 | 2238 | 17.068811 | 0.9376 | 1 | 176 | 329 | 53.49544 | 0.8855 | 1 | 604 | 1028 | 58.75486 | 0.7947 | 1 | 780 | 1357 | 57.47973 | 0.9165 | 1 | 920 | 2677 | 34.36683 | 0.9346 | 1 | 1351 | 4149 | 32.56206 | 0.9811 | 1 | 314 | 7.855892 | 0.1437 | 0 | 937 | 23.44258 | 0.55900 | 0 | 319 | 3054 | 10.44532 | 0.3000 | 0 | 187 | 782 | 23.913044 | 0.7498 | 0 | 1080 | 3671 | 29.419777 | 0.9742 | 1 | 3357 | 3997 | 83.98799 | 0.8419 | 1 | 1823 | 363 | 19.912233 | 0.7535 | 1 | 0 | 0.0000000 | 0.3251 | 0 | 150 | 1357 | 11.053795 | 0.9136 | 1 | 651 | 1357 | 47.97347 | 0.8585 | 1 | 0 | 3997 | 0.000000 | 0.3512 | 0 | 4.5862 | 0.9691 | 5 | 2.72670 | 0.6360 | 1 | 0.8419 | 0.8336 | 1 | 3.2019 | 0.8054 | 3 | 11.35670 | 0.8920 | 10 | 3801 | 1640 | 1226 | 1857 | 3801 | 48.85556 | 0.9333 | 1 | 226 | 1800 | 12.555556 | 0.9267 | 1 | 111 | 280 | 39.64286 | 0.8339 | 1 | 608 | 946 | 64.27061 | 0.8842 | 1 | 719 | 1226 | 58.64600 | 0.9528 | 1 | 650 | 2275 | 28.57143 | 0.9337 | 1 | 1027 | 3801 | 27.019206 | 0.9914 | 1 | 380 | 9.997369 | 0.14040 | 0 | 1223 | 32.17574 | 0.9607 | 1 | 219 | 2578 | 8.494957 | 0.15680 | 0 | 268 | 909 | 29.48295 | 0.8456 | 1 | 940 | 3400 | 27.647059 | 0.9728 | 1 | 3318 | 3801 | 87.29282 | 0.8579 | 1 | 1640 | 262 | 15.9756098 | 0.6917 | 0 | 0 | 0.0000000 | 0.3216 | 0 | 124 | 1226 | 10.114192 | 0.8955 | 1 | 477 | 1226 | 38.90701 | 0.8258 | 1 | 0 | 3801 | 0.0000000 | 0.1517 | 0 | 4.7379 | 0.9829 | 5 | 3.07630 | 0.8013 | 3 | 0.8579 | 0.8501 | 1 | 2.8863 | 0.6781 | 2 | 11.55840 | 0.9150 | 11 |
34001000400 | 34 | 001 | 000400 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 2902 | 2683 | 1401 | 1172 | 2902 | 40.38594 | 0.8615 | 1 | 190 | 1389 | 13.678906 | 0.8811 | 1 | 364 | 707 | 51.48515 | 0.8627 | 1 | 507 | 694 | 73.05476 | 0.9503 | 1 | 871 | 1401 | 62.16988 | 0.9572 | 1 | 481 | 1981 | 24.28067 | 0.8339 | 1 | 674 | 3204 | 21.03620 | 0.8998 | 1 | 434 | 14.955203 | 0.6083 | 0 | 596 | 20.53756 | 0.33980 | 0 | 426 | 2607 | 16.34062 | 0.6886 | 0 | 111 | 652 | 17.024540 | 0.6204 | 0 | 215 | 2736 | 7.858187 | 0.8008 | 1 | 1792 | 2902 | 61.75052 | 0.7584 | 1 | 2683 | 2049 | 76.369735 | 0.9401 | 1 | 0 | 0.0000000 | 0.3251 | 0 | 69 | 1401 | 4.925053 | 0.7847 | 1 | 511 | 1401 | 36.47395 | 0.7992 | 1 | 72 | 2902 | 2.481048 | 0.8114 | 1 | 4.4335 | 0.9468 | 5 | 3.05790 | 0.7908 | 1 | 0.7584 | 0.7510 | 1 | 3.6605 | 0.9391 | 4 | 11.91030 | 0.9339 | 11 | 3178 | 2264 | 1390 | 1508 | 3176 | 47.48111 | 0.9246 | 1 | 172 | 1804 | 9.534368 | 0.8460 | 1 | 205 | 468 | 43.80342 | 0.8858 | 1 | 622 | 922 | 67.46204 | 0.9192 | 1 | 827 | 1390 | 59.49640 | 0.9587 | 1 | 364 | 2076 | 17.53372 | 0.8013 | 1 | 476 | 3178 | 14.977974 | 0.9390 | 1 | 483 | 15.198238 | 0.41220 | 0 | 539 | 16.96035 | 0.2484 | 0 | 319 | 2639 | 12.087912 | 0.38790 | 0 | 101 | 565 | 17.87611 | 0.6539 | 0 | 583 | 3022 | 19.291860 | 0.9349 | 1 | 2186 | 3178 | 68.78540 | 0.7658 | 1 | 2264 | 1609 | 71.0689046 | 0.9266 | 1 | 15 | 0.6625442 | 0.7078 | 0 | 226 | 1390 | 16.258993 | 0.9567 | 1 | 599 | 1390 | 43.09353 | 0.8474 | 1 | 20 | 3178 | 0.6293266 | 0.6292 | 0 | 4.4696 | 0.9558 | 5 | 2.63730 | 0.5864 | 1 | 0.7658 | 0.7588 | 1 | 4.0677 | 0.9762 | 3 | 11.94040 | 0.9387 | 10 |
34001000500 | 34 | 001 | 000500 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 3483 | 1241 | 1027 | 1938 | 3483 | 55.64169 | 0.9533 | 1 | 124 | 1630 | 7.607362 | 0.5830 | 0 | 227 | 446 | 50.89686 | 0.8549 | 1 | 478 | 581 | 82.27194 | 0.9799 | 1 | 705 | 1027 | 68.64654 | 0.9863 | 1 | 733 | 2077 | 35.29129 | 0.9396 | 1 | 727 | 3258 | 22.31430 | 0.9149 | 1 | 377 | 10.824002 | 0.3081 | 0 | 1055 | 30.28998 | 0.90140 | 1 | 268 | 2401 | 11.16202 | 0.3549 | 0 | 209 | 763 | 27.391874 | 0.7940 | 1 | 911 | 3077 | 29.606760 | 0.9746 | 1 | 3036 | 3483 | 87.16624 | 0.8550 | 1 | 1241 | 52 | 4.190169 | 0.4505 | 0 | 4 | 0.3223207 | 0.6567 | 0 | 113 | 1027 | 11.002921 | 0.9128 | 1 | 422 | 1027 | 41.09056 | 0.8250 | 1 | 0 | 3483 | 0.000000 | 0.3512 | 0 | 4.3771 | 0.9379 | 4 | 3.33300 | 0.8766 | 3 | 0.8550 | 0.8467 | 1 | 3.1962 | 0.8026 | 2 | 11.76130 | 0.9229 | 10 | 3385 | 1185 | 945 | 1682 | 3364 | 50.00000 | 0.9391 | 1 | 72 | 1577 | 4.565631 | 0.4586 | 0 | 185 | 468 | 39.52991 | 0.8332 | 1 | 362 | 477 | 75.89099 | 0.9703 | 1 | 547 | 945 | 57.88360 | 0.9477 | 1 | 592 | 1983 | 29.85376 | 0.9422 | 1 | 738 | 3385 | 21.802068 | 0.9817 | 1 | 240 | 7.090103 | 0.05988 | 0 | 1129 | 33.35303 | 0.9689 | 1 | 135 | 2256 | 5.984043 | 0.04817 | 0 | 110 | 717 | 15.34170 | 0.5822 | 0 | 721 | 3076 | 23.439532 | 0.9569 | 1 | 3029 | 3385 | 89.48301 | 0.8727 | 1 | 1185 | 9 | 0.7594937 | 0.2382 | 0 | 0 | 0.0000000 | 0.3216 | 0 | 103 | 945 | 10.899471 | 0.9072 | 1 | 263 | 945 | 27.83069 | 0.7560 | 1 | 0 | 3385 | 0.0000000 | 0.1517 | 0 | 4.2693 | 0.9283 | 4 | 2.61605 | 0.5709 | 2 | 0.8727 | 0.8648 | 1 | 2.3747 | 0.4357 | 2 | 10.13275 | 0.7921 | 9 |
34001001100 | 34 | 001 | 001100 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 2204 | 1204 | 1204 | 1185 | 2204 | 53.76588 | 0.9457 | 1 | 219 | 927 | 23.624596 | 0.9830 | 1 | 97 | 172 | 56.39535 | 0.9094 | 1 | 462 | 1032 | 44.76744 | 0.4746 | 0 | 559 | 1204 | 46.42857 | 0.7197 | 0 | 346 | 1440 | 24.02778 | 0.8306 | 1 | 469 | 1942 | 24.15036 | 0.9360 | 1 | 363 | 16.470054 | 0.7020 | 0 | 578 | 26.22505 | 0.74410 | 0 | 442 | 1558 | 28.36970 | 0.9675 | 1 | 247 | 396 | 62.373737 | 0.9898 | 1 | 104 | 2051 | 5.070697 | 0.7260 | 0 | 2118 | 2204 | 96.09800 | 0.9204 | 1 | 1204 | 570 | 47.342193 | 0.8858 | 1 | 0 | 0.0000000 | 0.3251 | 0 | 14 | 1204 | 1.162791 | 0.4877 | 0 | 817 | 1204 | 67.85714 | 0.9413 | 1 | 0 | 2204 | 0.000000 | 0.3512 | 0 | 4.4150 | 0.9451 | 4 | 4.12940 | 0.9805 | 2 | 0.9204 | 0.9114 | 1 | 2.9911 | 0.7243 | 2 | 12.45590 | 0.9597 | 9 | 1950 | 1267 | 1096 | 1131 | 1950 | 58.00000 | 0.9678 | 1 | 66 | 706 | 9.348442 | 0.8395 | 1 | 42 | 101 | 41.58416 | 0.8612 | 1 | 309 | 995 | 31.05528 | 0.1959 | 0 | 351 | 1096 | 32.02555 | 0.4782 | 0 | 510 | 1379 | 36.98332 | 0.9763 | 1 | 155 | 1950 | 7.948718 | 0.7660 | 1 | 392 | 20.102564 | 0.69880 | 0 | 447 | 22.92308 | 0.6712 | 0 | 570 | 1503 | 37.924152 | 0.99200 | 1 | 143 | 374 | 38.23529 | 0.9167 | 1 | 109 | 1841 | 5.920695 | 0.7464 | 0 | 1909 | 1950 | 97.89744 | 0.9529 | 1 | 1267 | 479 | 37.8058406 | 0.8464 | 1 | 0 | 0.0000000 | 0.3216 | 0 | 33 | 1096 | 3.010949 | 0.6446 | 0 | 743 | 1096 | 67.79197 | 0.9414 | 1 | 0 | 1950 | 0.0000000 | 0.1517 | 0 | 4.0278 | 0.8848 | 4 | 4.02510 | 0.9798 | 2 | 0.9529 | 0.9442 | 1 | 2.9057 | 0.6869 | 2 | 11.91150 | 0.9365 | 9 |
# National data
svi_national %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt | FIPS_st | FIPS_county | FIPS_tract | state | state_name | county | region_number | region | division_number | division | E_TOTPOP_10 | E_HU_10 | E_HH_10 | E_POV150_10 | ET_POVSTATUS_10 | EP_POV150_10 | EPL_POV150_10 | F_POV150_10 | E_UNEMP_10 | ET_EMPSTATUS_10 | EP_UNEMP_10 | EPL_UNEMP_10 | F_UNEMP_10 | E_HBURD_OWN_10 | ET_HOUSINGCOST_OWN_10 | EP_HBURD_OWN_10 | EPL_HBURD_OWN_10 | F_HBURD_OWN_10 | E_HBURD_RENT_10 | ET_HOUSINGCOST_RENT_10 | EP_HBURD_RENT_10 | EPL_HBURD_RENT_10 | F_HBURD_RENT_10 | E_HBURD_10 | ET_HOUSINGCOST_10 | EP_HBURD_10 | EPL_HBURD_10 | F_HBURD_10 | E_NOHSDP_10 | ET_EDSTATUS_10 | EP_NOHSDP_10 | EPL_NOHSDP_10 | F_NOHSDP_10 | E_UNINSUR_12 | ET_INSURSTATUS_12 | EP_UNINSUR_12 | EPL_UNINSUR_12 | F_UNINSUR_12 | E_AGE65_10 | EP_AGE65_10 | EPL_AGE65_10 | F_AGE65_10 | E_AGE17_10 | EP_AGE17_10 | EPL_AGE17_10 | F_AGE17_10 | E_DISABL_12 | ET_DISABLSTATUS_12 | EP_DISABL_12 | EPL_DISABL_12 | F_DISABL_12 | E_SNGPNT_10 | ET_FAMILIES_10 | EP_SNGPNT_10 | EPL_SNGPNT_10 | F_SNGPNT_10 | E_LIMENG_10 | ET_POPAGE5UP_10 | EP_LIMENG_10 | EPL_LIMENG_10 | F_LIMENG_10 | E_MINRTY_10 | ET_POPETHRACE_10 | EP_MINRTY_10 | EPL_MINRTY_10 | F_MINRTY_10 | E_STRHU_10 | E_MUNIT_10 | EP_MUNIT_10 | EPL_MUNIT_10 | F_MUNIT_10 | E_MOBILE_10 | EP_MOBILE_10 | EPL_MOBILE_10 | F_MOBILE_10 | E_CROWD_10 | ET_OCCUPANTS_10 | EP_CROWD_10 | EPL_CROWD_10 | F_CROWD_10 | E_NOVEH_10 | ET_KNOWNVEH_10 | EP_NOVEH_10 | EPL_NOVEH_10 | F_NOVEH_10 | E_GROUPQ_10 | ET_HHTYPE_10 | EP_GROUPQ_10 | EPL_GROUPQ_10 | F_GROUPQ_10 | SPL_THEME1_10 | RPL_THEME1_10 | F_THEME1_10 | SPL_THEME2_10 | RPL_THEME2_10 | F_THEME2_10 | SPL_THEME3_10 | RPL_THEME3_10 | F_THEME3_10 | SPL_THEME4_10 | RPL_THEME4_10 | F_THEME4_10 | SPL_THEMES_10 | RPL_THEMES_10 | F_TOTAL_10 | E_TOTPOP_20 | E_HU_20 | E_HH_20 | E_POV150_20 | ET_POVSTATUS_20 | EP_POV150_20 | EPL_POV150_20 | F_POV150_20 | E_UNEMP_20 | ET_EMPSTATUS_20 | EP_UNEMP_20 | EPL_UNEMP_20 | F_UNEMP_20 | E_HBURD_OWN_20 | ET_HOUSINGCOST_OWN_20 | EP_HBURD_OWN_20 | EPL_HBURD_OWN_20 | F_HBURD_OWN_20 | E_HBURD_RENT_20 | ET_HOUSINGCOST_RENT_20 | EP_HBURD_RENT_20 | EPL_HBURD_RENT_20 | F_HBURD_RENT_20 | E_HBURD_20 | ET_HOUSINGCOST_20 | EP_HBURD_20 | EPL_HBURD_20 | F_HBURD_20 | E_NOHSDP_20 | ET_EDSTATUS_20 | EP_NOHSDP_20 | EPL_NOHSDP_20 | F_NOHSDP_20 | E_UNINSUR_20 | ET_INSURSTATUS_20 | EP_UNINSUR_20 | EPL_UNINSUR_20 | F_UNINSUR_20 | E_AGE65_20 | EP_AGE65_20 | EPL_AGE65_20 | F_AGE65_20 | E_AGE17_20 | EP_AGE17_20 | EPL_AGE17_20 | F_AGE17_20 | E_DISABL_20 | ET_DISABLSTATUS_20 | EP_DISABL_20 | EPL_DISABL_20 | F_DISABL_20 | E_SNGPNT_20 | ET_FAMILIES_20 | EP_SNGPNT_20 | EPL_SNGPNT_20 | F_SNGPNT_20 | E_LIMENG_20 | ET_POPAGE5UP_20 | EP_LIMENG_20 | EPL_LIMENG_20 | F_LIMENG_20 | E_MINRTY_20 | ET_POPETHRACE_20 | EP_MINRTY_20 | EPL_MINRTY_20 | F_MINRTY_20 | E_STRHU_20 | E_MUNIT_20 | EP_MUNIT_20 | EPL_MUNIT_20 | F_MUNIT_20 | E_MOBILE_20 | EP_MOBILE_20 | EPL_MOBILE_20 | F_MOBILE_20 | E_CROWD_20 | ET_OCCUPANTS_20 | EP_CROWD_20 | EPL_CROWD_20 | F_CROWD_20 | E_NOVEH_20 | ET_KNOWNVEH_20 | EP_NOVEH_20 | EPL_NOVEH_20 | F_NOVEH_20 | E_GROUPQ_20 | ET_HHTYPE_20 | EP_GROUPQ_20 | EPL_GROUPQ_20 | F_GROUPQ_20 | SPL_THEME1_20 | RPL_THEME1_20 | F_THEME1_20 | SPL_THEME2_20 | RPL_THEME2_20 | F_THEME2_20 | SPL_THEME3_20 | RPL_THEME3_20 | F_THEME3_20 | SPL_THEME4_20 | RPL_THEME4_20 | F_THEME4_20 | SPL_THEMES_20 | RPL_THEMES_20 | F_TOTAL_20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
01001020100 | 01 | 001 | 020100 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 1809 | 771 | 696 | 297 | 1809 | 16.41791 | 0.3871 | 0 | 36 | 889 | 4.049494 | 0.1790 | 0 | 127 | 598 | 21.23746 | 0.20770 | 0 | 47 | 98 | 47.95918 | 0.5767 | 0 | 174 | 696 | 25.00000 | 0.18790 | 0 | 196 | 1242 | 15.780998 | 0.6093 | 0 | 186 | 1759 | 10.574190 | 0.3790 | 0 | 222 | 12.271973 | 0.4876 | 0 | 445 | 24.59923 | 0.5473 | 0 | 298 | 1335 | 22.32210 | 0.8454 | 1 | 27 | 545 | 4.954128 | 0.09275 | 0 | 36 | 1705 | 2.1114370 | 0.59040 | 0 | 385 | 1809 | 21.282477 | 0.4524 | 0 | 771 | 0 | 0.0000000 | 0.1224 | 0 | 92 | 11.9325551 | 0.8005 | 1 | 0 | 696 | 0.0000000 | 0.1238 | 0 | 50 | 696 | 7.183908 | 0.6134 | 0 | 0 | 1809 | 0 | 0.364 | 0 | 1.74230 | 0.28200 | 0 | 2.56345 | 0.5296 | 1 | 0.4524 | 0.4482 | 0 | 2.0241 | 0.2519 | 1 | 6.78225 | 0.3278 | 2 | 1941 | 710 | 693 | 352 | 1941 | 18.13498 | 0.4630 | 0 | 18 | 852 | 2.112676 | 0.15070 | 0 | 81 | 507 | 15.976331 | 0.26320 | 0 | 63 | 186 | 33.87097 | 0.2913 | 0 | 144 | 693 | 20.77922 | 0.2230 | 0 | 187 | 1309 | 14.285714 | 0.6928 | 0 | 187 | 1941 | 9.634209 | 0.6617 | 0 | 295 | 15.19835 | 0.4601 | 0 | 415 | 21.38073 | 0.4681 | 0 | 391 | 1526 | 25.62254 | 0.9011 | 1 | 58 | 555 | 10.45045 | 0.3451 | 0 | 0 | 1843 | 0.0000000 | 0.09479 | 0 | 437 | 1941 | 22.51417 | 0.3902 | 0 | 710 | 0 | 0.0000000 | 0.1079 | 0 | 88 | 12.3943662 | 0.8263 | 1 | 0 | 693 | 0.0000000 | 0.09796 | 0 | 10 | 693 | 1.443001 | 0.1643 | 0 | 0 | 1941 | 0.000000 | 0.1831 | 0 | 2.19120 | 0.4084 | 0 | 2.26919 | 0.3503 | 1 | 0.3902 | 0.3869 | 0 | 1.37956 | 0.07216 | 1 | 6.23015 | 0.2314 | 2 |
01001020200 | 01 | 001 | 020200 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 2020 | 816 | 730 | 495 | 1992 | 24.84940 | 0.5954 | 0 | 68 | 834 | 8.153477 | 0.5754 | 0 | 49 | 439 | 11.16173 | 0.02067 | 0 | 105 | 291 | 36.08247 | 0.3019 | 0 | 154 | 730 | 21.09589 | 0.09312 | 0 | 339 | 1265 | 26.798419 | 0.8392 | 1 | 313 | 2012 | 15.556660 | 0.6000 | 0 | 204 | 10.099010 | 0.3419 | 0 | 597 | 29.55446 | 0.8192 | 1 | 359 | 1515 | 23.69637 | 0.8791 | 1 | 132 | 456 | 28.947368 | 0.83510 | 1 | 15 | 1890 | 0.7936508 | 0.40130 | 0 | 1243 | 2020 | 61.534653 | 0.7781 | 1 | 816 | 0 | 0.0000000 | 0.1224 | 0 | 34 | 4.1666667 | 0.6664 | 0 | 13 | 730 | 1.7808219 | 0.5406 | 0 | 115 | 730 | 15.753425 | 0.8382 | 1 | 0 | 2020 | 0 | 0.364 | 0 | 2.70312 | 0.56650 | 1 | 3.27660 | 0.8614 | 3 | 0.7781 | 0.7709 | 1 | 2.5316 | 0.5047 | 1 | 9.28942 | 0.6832 | 6 | 1757 | 720 | 573 | 384 | 1511 | 25.41363 | 0.6427 | 0 | 29 | 717 | 4.044630 | 0.41320 | 0 | 33 | 392 | 8.418367 | 0.03542 | 0 | 116 | 181 | 64.08840 | 0.9086 | 1 | 149 | 573 | 26.00349 | 0.4041 | 0 | 139 | 1313 | 10.586443 | 0.5601 | 0 | 91 | 1533 | 5.936073 | 0.4343 | 0 | 284 | 16.16392 | 0.5169 | 0 | 325 | 18.49744 | 0.2851 | 0 | 164 | 1208 | 13.57616 | 0.4127 | 0 | 42 | 359 | 11.69916 | 0.3998 | 0 | 0 | 1651 | 0.0000000 | 0.09479 | 0 | 1116 | 1757 | 63.51736 | 0.7591 | 1 | 720 | 3 | 0.4166667 | 0.2470 | 0 | 5 | 0.6944444 | 0.5106 | 0 | 9 | 573 | 1.5706806 | 0.46880 | 0 | 57 | 573 | 9.947644 | 0.7317 | 0 | 212 | 1757 | 12.066022 | 0.9549 | 1 | 2.45440 | 0.4888 | 0 | 1.70929 | 0.1025 | 0 | 0.7591 | 0.7527 | 1 | 2.91300 | 0.68620 | 1 | 7.83579 | 0.4802 | 2 |
01001020300 | 01 | 001 | 020300 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 3543 | 1403 | 1287 | 656 | 3533 | 18.56779 | 0.4443 | 0 | 93 | 1552 | 5.992268 | 0.3724 | 0 | 273 | 957 | 28.52665 | 0.45780 | 0 | 178 | 330 | 53.93939 | 0.7152 | 0 | 451 | 1287 | 35.04274 | 0.49930 | 0 | 346 | 2260 | 15.309734 | 0.5950 | 0 | 252 | 3102 | 8.123791 | 0.2596 | 0 | 487 | 13.745413 | 0.5868 | 0 | 998 | 28.16822 | 0.7606 | 1 | 371 | 2224 | 16.68165 | 0.6266 | 0 | 126 | 913 | 13.800657 | 0.46350 | 0 | 0 | 3365 | 0.0000000 | 0.09298 | 0 | 637 | 3543 | 17.979114 | 0.4049 | 0 | 1403 | 10 | 0.7127584 | 0.3015 | 0 | 2 | 0.1425517 | 0.4407 | 0 | 0 | 1287 | 0.0000000 | 0.1238 | 0 | 101 | 1287 | 7.847708 | 0.6443 | 0 | 0 | 3543 | 0 | 0.364 | 0 | 2.17060 | 0.41010 | 0 | 2.53048 | 0.5116 | 1 | 0.4049 | 0.4011 | 0 | 1.8743 | 0.1942 | 0 | 6.98028 | 0.3576 | 1 | 3694 | 1464 | 1351 | 842 | 3694 | 22.79372 | 0.5833 | 0 | 53 | 1994 | 2.657974 | 0.22050 | 0 | 117 | 967 | 12.099276 | 0.11370 | 0 | 147 | 384 | 38.28125 | 0.3856 | 0 | 264 | 1351 | 19.54108 | 0.1827 | 0 | 317 | 2477 | 12.797739 | 0.6460 | 0 | 127 | 3673 | 3.457664 | 0.2308 | 0 | 464 | 12.56091 | 0.3088 | 0 | 929 | 25.14889 | 0.7080 | 0 | 473 | 2744 | 17.23761 | 0.6211 | 0 | 263 | 975 | 26.97436 | 0.8234 | 1 | 128 | 3586 | 3.5694367 | 0.70770 | 0 | 1331 | 3694 | 36.03140 | 0.5515 | 0 | 1464 | 26 | 1.7759563 | 0.3675 | 0 | 14 | 0.9562842 | 0.5389 | 0 | 35 | 1351 | 2.5906736 | 0.60550 | 0 | 42 | 1351 | 3.108808 | 0.3415 | 0 | 0 | 3694 | 0.000000 | 0.1831 | 0 | 1.86330 | 0.3063 | 0 | 3.16900 | 0.8380 | 1 | 0.5515 | 0.5468 | 0 | 2.03650 | 0.26830 | 0 | 7.62030 | 0.4460 | 1 |
01001020400 | 01 | 001 | 020400 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 4840 | 1957 | 1839 | 501 | 4840 | 10.35124 | 0.2177 | 0 | 101 | 2129 | 4.744011 | 0.2447 | 0 | 310 | 1549 | 20.01291 | 0.17080 | 0 | 89 | 290 | 30.68966 | 0.2044 | 0 | 399 | 1839 | 21.69657 | 0.10540 | 0 | 274 | 3280 | 8.353658 | 0.3205 | 0 | 399 | 4293 | 9.294200 | 0.3171 | 0 | 955 | 19.731405 | 0.8643 | 1 | 1195 | 24.69008 | 0.5530 | 0 | 625 | 3328 | 18.78005 | 0.7233 | 0 | 152 | 1374 | 11.062591 | 0.34710 | 0 | 10 | 4537 | 0.2204100 | 0.22560 | 0 | 297 | 4840 | 6.136364 | 0.1647 | 0 | 1957 | 33 | 1.6862545 | 0.3843 | 0 | 25 | 1.2774655 | 0.5516 | 0 | 14 | 1839 | 0.7612833 | 0.3564 | 0 | 19 | 1839 | 1.033170 | 0.1127 | 0 | 0 | 4840 | 0 | 0.364 | 0 | 1.20540 | 0.13470 | 0 | 2.71330 | 0.6129 | 1 | 0.1647 | 0.1632 | 0 | 1.7690 | 0.1591 | 0 | 5.85240 | 0.1954 | 1 | 3539 | 1741 | 1636 | 503 | 3539 | 14.21305 | 0.3472 | 0 | 39 | 1658 | 2.352232 | 0.17990 | 0 | 219 | 1290 | 16.976744 | 0.30880 | 0 | 74 | 346 | 21.38728 | 0.1037 | 0 | 293 | 1636 | 17.90954 | 0.1333 | 0 | 173 | 2775 | 6.234234 | 0.3351 | 0 | 169 | 3529 | 4.788892 | 0.3448 | 0 | 969 | 27.38062 | 0.9225 | 1 | 510 | 14.41085 | 0.1208 | 0 | 670 | 3019 | 22.19278 | 0.8194 | 1 | 148 | 1137 | 13.01671 | 0.4541 | 0 | 89 | 3409 | 2.6107363 | 0.64690 | 0 | 454 | 3539 | 12.82848 | 0.2364 | 0 | 1741 | 143 | 8.2136703 | 0.6028 | 0 | 0 | 0.0000000 | 0.2186 | 0 | 10 | 1636 | 0.6112469 | 0.28340 | 0 | 72 | 1636 | 4.400978 | 0.4538 | 0 | 0 | 3539 | 0.000000 | 0.1831 | 0 | 1.34030 | 0.1575 | 0 | 2.96370 | 0.7496 | 2 | 0.2364 | 0.2344 | 0 | 1.74170 | 0.16270 | 0 | 6.28210 | 0.2389 | 2 |
01001020500 | 01 | 001 | 020500 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 9938 | 3969 | 3741 | 1096 | 9938 | 11.02838 | 0.2364 | 0 | 188 | 4937 | 3.807981 | 0.1577 | 0 | 426 | 2406 | 17.70574 | 0.11050 | 0 | 528 | 1335 | 39.55056 | 0.3753 | 0 | 954 | 3741 | 25.50120 | 0.20140 | 0 | 293 | 5983 | 4.897209 | 0.1655 | 0 | 740 | 10110 | 7.319486 | 0.2211 | 0 | 837 | 8.422218 | 0.2408 | 0 | 3012 | 30.30791 | 0.8455 | 1 | 759 | 7155 | 10.60797 | 0.2668 | 0 | 476 | 2529 | 18.821669 | 0.63540 | 0 | 78 | 9297 | 0.8389803 | 0.41110 | 0 | 1970 | 9938 | 19.822902 | 0.4330 | 0 | 3969 | 306 | 7.7097506 | 0.6153 | 0 | 0 | 0.0000000 | 0.2198 | 0 | 7 | 3741 | 0.1871157 | 0.2535 | 0 | 223 | 3741 | 5.960973 | 0.5483 | 0 | 0 | 9938 | 0 | 0.364 | 0 | 0.98210 | 0.08468 | 0 | 2.39960 | 0.4381 | 1 | 0.4330 | 0.4290 | 0 | 2.0009 | 0.2430 | 0 | 5.81560 | 0.1905 | 1 | 10674 | 4504 | 4424 | 1626 | 10509 | 15.47245 | 0.3851 | 0 | 81 | 5048 | 1.604596 | 0.09431 | 0 | 321 | 2299 | 13.962592 | 0.17970 | 0 | 711 | 2125 | 33.45882 | 0.2836 | 0 | 1032 | 4424 | 23.32731 | 0.3109 | 0 | 531 | 6816 | 7.790493 | 0.4251 | 0 | 301 | 10046 | 2.996217 | 0.1894 | 0 | 1613 | 15.11149 | 0.4553 | 0 | 2765 | 25.90407 | 0.7494 | 0 | 1124 | 7281 | 15.43744 | 0.5253 | 0 | 342 | 2912 | 11.74451 | 0.4019 | 0 | 52 | 9920 | 0.5241935 | 0.35230 | 0 | 2603 | 10674 | 24.38636 | 0.4160 | 0 | 4504 | 703 | 15.6083481 | 0.7378 | 0 | 29 | 0.6438721 | 0.5037 | 0 | 37 | 4424 | 0.8363472 | 0.33420 | 0 | 207 | 4424 | 4.679023 | 0.4754 | 0 | 176 | 10674 | 1.648866 | 0.7598 | 1 | 1.40481 | 0.1743 | 0 | 2.48420 | 0.4802 | 0 | 0.4160 | 0.4125 | 0 | 2.81090 | 0.63730 | 1 | 7.11591 | 0.3654 | 1 |
01001020600 | 01 | 001 | 020600 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 3402 | 1456 | 1308 | 735 | 3402 | 21.60494 | 0.5199 | 0 | 134 | 1720 | 7.790698 | 0.5436 | 0 | 242 | 1032 | 23.44961 | 0.28010 | 0 | 62 | 276 | 22.46377 | 0.1035 | 0 | 304 | 1308 | 23.24159 | 0.14070 | 0 | 301 | 2151 | 13.993491 | 0.5510 | 0 | 355 | 3445 | 10.304790 | 0.3656 | 0 | 386 | 11.346267 | 0.4232 | 0 | 931 | 27.36626 | 0.7200 | 0 | 440 | 2439 | 18.04018 | 0.6912 | 0 | 143 | 924 | 15.476190 | 0.52900 | 0 | 4 | 3254 | 0.1229256 | 0.19840 | 0 | 723 | 3402 | 21.252205 | 0.4519 | 0 | 1456 | 18 | 1.2362637 | 0.3507 | 0 | 433 | 29.7390110 | 0.9468 | 1 | 16 | 1308 | 1.2232416 | 0.4493 | 0 | 28 | 1308 | 2.140673 | 0.2298 | 0 | 0 | 3402 | 0 | 0.364 | 0 | 2.12080 | 0.39510 | 0 | 2.56180 | 0.5288 | 0 | 0.4519 | 0.4477 | 0 | 2.3406 | 0.4048 | 1 | 7.47510 | 0.4314 | 1 | 3536 | 1464 | 1330 | 1279 | 3523 | 36.30429 | 0.8215 | 1 | 34 | 1223 | 2.780049 | 0.23780 | 0 | 321 | 1111 | 28.892889 | 0.75870 | 1 | 67 | 219 | 30.59361 | 0.2305 | 0 | 388 | 1330 | 29.17293 | 0.5075 | 0 | 306 | 2380 | 12.857143 | 0.6480 | 0 | 415 | 3496 | 11.870709 | 0.7535 | 1 | 547 | 15.46946 | 0.4760 | 0 | 982 | 27.77149 | 0.8327 | 1 | 729 | 2514 | 28.99761 | 0.9488 | 1 | 95 | 880 | 10.79545 | 0.3601 | 0 | 0 | 3394 | 0.0000000 | 0.09479 | 0 | 985 | 3536 | 27.85633 | 0.4608 | 0 | 1464 | 0 | 0.0000000 | 0.1079 | 0 | 364 | 24.8633880 | 0.9300 | 1 | 0 | 1330 | 0.0000000 | 0.09796 | 0 | 17 | 1330 | 1.278196 | 0.1463 | 0 | 0 | 3536 | 0.000000 | 0.1831 | 0 | 2.96830 | 0.6434 | 2 | 2.71239 | 0.6156 | 2 | 0.4608 | 0.4569 | 0 | 1.46526 | 0.08976 | 1 | 7.60675 | 0.4440 | 5 |
Next, let’s filter our dataset only to NMTC eligible tracts:
GEOID_2010_trt | FIPS_st | FIPS_county | FIPS_tract | state | state_name | county | region_number | region | division_number | division | E_TOTPOP_10 | E_HU_10 | E_HH_10 | E_POV150_10 | ET_POVSTATUS_10 | EP_POV150_10 | EPL_POV150_10 | F_POV150_10 | E_UNEMP_10 | ET_EMPSTATUS_10 | EP_UNEMP_10 | EPL_UNEMP_10 | F_UNEMP_10 | E_HBURD_OWN_10 | ET_HOUSINGCOST_OWN_10 | EP_HBURD_OWN_10 | EPL_HBURD_OWN_10 | F_HBURD_OWN_10 | E_HBURD_RENT_10 | ET_HOUSINGCOST_RENT_10 | EP_HBURD_RENT_10 | EPL_HBURD_RENT_10 | F_HBURD_RENT_10 | E_HBURD_10 | ET_HOUSINGCOST_10 | EP_HBURD_10 | EPL_HBURD_10 | F_HBURD_10 | E_NOHSDP_10 | ET_EDSTATUS_10 | EP_NOHSDP_10 | EPL_NOHSDP_10 | F_NOHSDP_10 | E_UNINSUR_12 | ET_INSURSTATUS_12 | EP_UNINSUR_12 | EPL_UNINSUR_12 | F_UNINSUR_12 | E_AGE65_10 | EP_AGE65_10 | EPL_AGE65_10 | F_AGE65_10 | E_AGE17_10 | EP_AGE17_10 | EPL_AGE17_10 | F_AGE17_10 | E_DISABL_12 | ET_DISABLSTATUS_12 | EP_DISABL_12 | EPL_DISABL_12 | F_DISABL_12 | E_SNGPNT_10 | ET_FAMILIES_10 | EP_SNGPNT_10 | EPL_SNGPNT_10 | F_SNGPNT_10 | E_LIMENG_10 | ET_POPAGE5UP_10 | EP_LIMENG_10 | EPL_LIMENG_10 | F_LIMENG_10 | E_MINRTY_10 | ET_POPETHRACE_10 | EP_MINRTY_10 | EPL_MINRTY_10 | F_MINRTY_10 | E_STRHU_10 | E_MUNIT_10 | EP_MUNIT_10 | EPL_MUNIT_10 | F_MUNIT_10 | E_MOBILE_10 | EP_MOBILE_10 | EPL_MOBILE_10 | F_MOBILE_10 | E_CROWD_10 | ET_OCCUPANTS_10 | EP_CROWD_10 | EPL_CROWD_10 | F_CROWD_10 | E_NOVEH_10 | ET_KNOWNVEH_10 | EP_NOVEH_10 | EPL_NOVEH_10 | F_NOVEH_10 | E_GROUPQ_10 | ET_HHTYPE_10 | EP_GROUPQ_10 | EPL_GROUPQ_10 | F_GROUPQ_10 | SPL_THEME1_10 | RPL_THEME1_10 | F_THEME1_10 | SPL_THEME2_10 | RPL_THEME2_10 | F_THEME2_10 | SPL_THEME3_10 | RPL_THEME3_10 | F_THEME3_10 | SPL_THEME4_10 | RPL_THEME4_10 | F_THEME4_10 | SPL_THEMES_10 | RPL_THEMES_10 | F_TOTAL_10 | E_TOTPOP_20 | E_HU_20 | E_HH_20 | E_POV150_20 | ET_POVSTATUS_20 | EP_POV150_20 | EPL_POV150_20 | F_POV150_20 | E_UNEMP_20 | ET_EMPSTATUS_20 | EP_UNEMP_20 | EPL_UNEMP_20 | F_UNEMP_20 | E_HBURD_OWN_20 | ET_HOUSINGCOST_OWN_20 | EP_HBURD_OWN_20 | EPL_HBURD_OWN_20 | F_HBURD_OWN_20 | E_HBURD_RENT_20 | ET_HOUSINGCOST_RENT_20 | EP_HBURD_RENT_20 | EPL_HBURD_RENT_20 | F_HBURD_RENT_20 | E_HBURD_20 | ET_HOUSINGCOST_20 | EP_HBURD_20 | EPL_HBURD_20 | F_HBURD_20 | E_NOHSDP_20 | ET_EDSTATUS_20 | EP_NOHSDP_20 | EPL_NOHSDP_20 | F_NOHSDP_20 | E_UNINSUR_20 | ET_INSURSTATUS_20 | EP_UNINSUR_20 | EPL_UNINSUR_20 | F_UNINSUR_20 | E_AGE65_20 | EP_AGE65_20 | EPL_AGE65_20 | F_AGE65_20 | E_AGE17_20 | EP_AGE17_20 | EPL_AGE17_20 | F_AGE17_20 | E_DISABL_20 | ET_DISABLSTATUS_20 | EP_DISABL_20 | EPL_DISABL_20 | F_DISABL_20 | E_SNGPNT_20 | ET_FAMILIES_20 | EP_SNGPNT_20 | EPL_SNGPNT_20 | F_SNGPNT_20 | E_LIMENG_20 | ET_POPAGE5UP_20 | EP_LIMENG_20 | EPL_LIMENG_20 | F_LIMENG_20 | E_MINRTY_20 | ET_POPETHRACE_20 | EP_MINRTY_20 | EPL_MINRTY_20 | F_MINRTY_20 | E_STRHU_20 | E_MUNIT_20 | EP_MUNIT_20 | EPL_MUNIT_20 | F_MUNIT_20 | E_MOBILE_20 | EP_MOBILE_20 | EPL_MOBILE_20 | F_MOBILE_20 | E_CROWD_20 | ET_OCCUPANTS_20 | EP_CROWD_20 | EPL_CROWD_20 | F_CROWD_20 | E_NOVEH_20 | ET_KNOWNVEH_20 | EP_NOVEH_20 | EPL_NOVEH_20 | F_NOVEH_20 | E_GROUPQ_20 | ET_HHTYPE_20 | EP_GROUPQ_20 | EPL_GROUPQ_20 | F_GROUPQ_20 | SPL_THEME1_20 | RPL_THEME1_20 | F_THEME1_20 | SPL_THEME2_20 | RPL_THEME2_20 | F_THEME2_20 | SPL_THEME3_20 | RPL_THEME3_20 | F_THEME3_20 | SPL_THEME4_20 | RPL_THEME4_20 | F_THEME4_20 | SPL_THEMES_20 | RPL_THEMES_20 | F_TOTAL_20 | nmtc_eligibility |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
34001000100 | 34 | 001 | 000100 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 2907 | 1088 | 983 | 1127 | 2907 | 38.76849 | 0.8482 | 1 | 144 | 1433 | 10.048849 | 0.7544 | 1 | 280 | 435 | 64.36782 | 0.9529 | 1 | 204 | 548 | 37.22628 | 0.2998 | 0 | 484 | 983 | 49.23703 | 0.7813 | 1 | 468 | 1759 | 26.60603 | 0.8634 | 1 | 532 | 2543 | 20.92017 | 0.8978 | 1 | 250 | 8.599931 | 0.1777 | 0 | 944 | 32.47334 | 0.94170 | 1 | 186 | 1851 | 10.04862 | 0.2706 | 0 | 266 | 678 | 39.233038 | 0.8981 | 1 | 177 | 2611 | 6.779012 | 0.7778 | 1 | 1928 | 2907 | 66.32267 | 0.7743 | 1 | 1088 | 113 | 10.386029 | 0.6229 | 0 | 9 | 0.8272059 | 0.7223 | 0 | 80 | 983 | 8.138352 | 0.8657 | 1 | 265 | 983 | 26.95829 | 0.7354 | 0 | 0 | 2907 | 0.000000 | 0.3512 | 0 | 4.1451 | 0.8935 | 5 | 3.06590 | 0.7944 | 3 | 0.7743 | 0.7667 | 1 | 3.2975 | 0.8414 | 1 | 11.28280 | 0.8862 | 10 | 2157 | 941 | 784 | 1182 | 2157 | 54.79833 | 0.9571 | 1 | 242 | 1058 | 22.873346 | 0.9922 | 1 | 215 | 342 | 62.86550 | 0.9780 | 1 | 316 | 442 | 71.49321 | 0.9481 | 1 | 531 | 784 | 67.72959 | 0.9893 | 1 | 396 | 1274 | 31.08320 | 0.9497 | 1 | 266 | 2157 | 12.331943 | 0.9041 | 1 | 185 | 8.576727 | 0.09430 | 0 | 552 | 25.59110 | 0.8128 | 1 | 297 | 1605 | 18.504673 | 0.74880 | 0 | 83 | 510 | 16.27451 | 0.6090 | 0 | 251 | 2020 | 12.425743 | 0.8710 | 1 | 1852 | 2157 | 85.85999 | 0.8476 | 1 | 941 | 118 | 12.5398512 | 0.6385 | 0 | 0 | 0.0000000 | 0.3216 | 0 | 67 | 784 | 8.545918 | 0.8657 | 1 | 212 | 784 | 27.04082 | 0.7502 | 1 | 0 | 2157 | 0.0000000 | 0.1517 | 0 | 4.7924 | 0.9850 | 5 | 3.13590 | 0.8217 | 2 | 0.8476 | 0.8400 | 1 | 2.7277 | 0.6085 | 2 | 11.50360 | 0.9104 | 10 | Yes |
34001000200 | 34 | 001 | 000200 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 3189 | 2217 | 1473 | 519 | 3189 | 16.27469 | 0.4806 | 0 | 109 | 1558 | 6.996149 | 0.5179 | 0 | 573 | 955 | 60.00000 | 0.9323 | 1 | 199 | 518 | 38.41699 | 0.3261 | 0 | 772 | 1473 | 52.41005 | 0.8418 | 1 | 405 | 2579 | 15.70376 | 0.6491 | 0 | 484 | 3547 | 13.64533 | 0.7154 | 0 | 847 | 26.560050 | 0.9629 | 1 | 436 | 13.67200 | 0.08181 | 0 | 608 | 3005 | 20.23295 | 0.8466 | 1 | 42 | 857 | 4.900817 | 0.1204 | 0 | 422 | 3072 | 13.736979 | 0.8799 | 1 | 1792 | 3189 | 56.19316 | 0.7390 | 0 | 2217 | 901 | 40.640505 | 0.8693 | 1 | 0 | 0.0000000 | 0.3251 | 0 | 48 | 1473 | 3.258656 | 0.7064 | 0 | 250 | 1473 | 16.97217 | 0.6444 | 0 | 0 | 3189 | 0.000000 | 0.3512 | 0 | 3.2048 | 0.6963 | 1 | 2.89161 | 0.7231 | 3 | 0.7390 | 0.7317 | 0 | 2.8964 | 0.6887 | 1 | 9.73181 | 0.7340 | 5 | 3510 | 2046 | 1353 | 1021 | 3510 | 29.08832 | 0.7682 | 1 | 121 | 1852 | 6.533477 | 0.6717 | 0 | 343 | 696 | 49.28161 | 0.9273 | 1 | 416 | 657 | 63.31811 | 0.8696 | 1 | 759 | 1353 | 56.09756 | 0.9321 | 1 | 553 | 2338 | 23.65269 | 0.8871 | 1 | 354 | 3510 | 10.085470 | 0.8530 | 1 | 643 | 18.319088 | 0.60310 | 0 | 1002 | 28.54701 | 0.9055 | 1 | 450 | 2508 | 17.942584 | 0.72330 | 0 | 237 | 786 | 30.15267 | 0.8539 | 1 | 534 | 3375 | 15.822222 | 0.9062 | 1 | 2534 | 3510 | 72.19373 | 0.7818 | 1 | 2046 | 906 | 44.2815249 | 0.8690 | 1 | 0 | 0.0000000 | 0.3216 | 0 | 119 | 1353 | 8.795270 | 0.8711 | 1 | 324 | 1353 | 23.94678 | 0.7255 | 0 | 0 | 3510 | 0.0000000 | 0.1517 | 0 | 4.1121 | 0.9003 | 4 | 3.99200 | 0.9781 | 3 | 0.7818 | 0.7747 | 1 | 2.9389 | 0.7011 | 2 | 11.82480 | 0.9310 | 10 | Yes |
34001000300 | 34 | 001 | 000300 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 3997 | 1823 | 1357 | 1401 | 3968 | 35.30746 | 0.8164 | 1 | 382 | 2238 | 17.068811 | 0.9376 | 1 | 176 | 329 | 53.49544 | 0.8855 | 1 | 604 | 1028 | 58.75486 | 0.7947 | 1 | 780 | 1357 | 57.47973 | 0.9165 | 1 | 920 | 2677 | 34.36683 | 0.9346 | 1 | 1351 | 4149 | 32.56206 | 0.9811 | 1 | 314 | 7.855892 | 0.1437 | 0 | 937 | 23.44258 | 0.55900 | 0 | 319 | 3054 | 10.44532 | 0.3000 | 0 | 187 | 782 | 23.913044 | 0.7498 | 0 | 1080 | 3671 | 29.419777 | 0.9742 | 1 | 3357 | 3997 | 83.98799 | 0.8419 | 1 | 1823 | 363 | 19.912233 | 0.7535 | 1 | 0 | 0.0000000 | 0.3251 | 0 | 150 | 1357 | 11.053795 | 0.9136 | 1 | 651 | 1357 | 47.97347 | 0.8585 | 1 | 0 | 3997 | 0.000000 | 0.3512 | 0 | 4.5862 | 0.9691 | 5 | 2.72670 | 0.6360 | 1 | 0.8419 | 0.8336 | 1 | 3.2019 | 0.8054 | 3 | 11.35670 | 0.8920 | 10 | 3801 | 1640 | 1226 | 1857 | 3801 | 48.85556 | 0.9333 | 1 | 226 | 1800 | 12.555556 | 0.9267 | 1 | 111 | 280 | 39.64286 | 0.8339 | 1 | 608 | 946 | 64.27061 | 0.8842 | 1 | 719 | 1226 | 58.64600 | 0.9528 | 1 | 650 | 2275 | 28.57143 | 0.9337 | 1 | 1027 | 3801 | 27.019206 | 0.9914 | 1 | 380 | 9.997369 | 0.14040 | 0 | 1223 | 32.17574 | 0.9607 | 1 | 219 | 2578 | 8.494957 | 0.15680 | 0 | 268 | 909 | 29.48295 | 0.8456 | 1 | 940 | 3400 | 27.647059 | 0.9728 | 1 | 3318 | 3801 | 87.29282 | 0.8579 | 1 | 1640 | 262 | 15.9756098 | 0.6917 | 0 | 0 | 0.0000000 | 0.3216 | 0 | 124 | 1226 | 10.114192 | 0.8955 | 1 | 477 | 1226 | 38.90701 | 0.8258 | 1 | 0 | 3801 | 0.0000000 | 0.1517 | 0 | 4.7379 | 0.9829 | 5 | 3.07630 | 0.8013 | 3 | 0.8579 | 0.8501 | 1 | 2.8863 | 0.6781 | 2 | 11.55840 | 0.9150 | 11 | Yes |
34001000400 | 34 | 001 | 000400 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 2902 | 2683 | 1401 | 1172 | 2902 | 40.38594 | 0.8615 | 1 | 190 | 1389 | 13.678906 | 0.8811 | 1 | 364 | 707 | 51.48515 | 0.8627 | 1 | 507 | 694 | 73.05476 | 0.9503 | 1 | 871 | 1401 | 62.16988 | 0.9572 | 1 | 481 | 1981 | 24.28067 | 0.8339 | 1 | 674 | 3204 | 21.03620 | 0.8998 | 1 | 434 | 14.955203 | 0.6083 | 0 | 596 | 20.53756 | 0.33980 | 0 | 426 | 2607 | 16.34062 | 0.6886 | 0 | 111 | 652 | 17.024540 | 0.6204 | 0 | 215 | 2736 | 7.858187 | 0.8008 | 1 | 1792 | 2902 | 61.75052 | 0.7584 | 1 | 2683 | 2049 | 76.369735 | 0.9401 | 1 | 0 | 0.0000000 | 0.3251 | 0 | 69 | 1401 | 4.925053 | 0.7847 | 1 | 511 | 1401 | 36.47395 | 0.7992 | 1 | 72 | 2902 | 2.481048 | 0.8114 | 1 | 4.4335 | 0.9468 | 5 | 3.05790 | 0.7908 | 1 | 0.7584 | 0.7510 | 1 | 3.6605 | 0.9391 | 4 | 11.91030 | 0.9339 | 11 | 3178 | 2264 | 1390 | 1508 | 3176 | 47.48111 | 0.9246 | 1 | 172 | 1804 | 9.534368 | 0.8460 | 1 | 205 | 468 | 43.80342 | 0.8858 | 1 | 622 | 922 | 67.46204 | 0.9192 | 1 | 827 | 1390 | 59.49640 | 0.9587 | 1 | 364 | 2076 | 17.53372 | 0.8013 | 1 | 476 | 3178 | 14.977974 | 0.9390 | 1 | 483 | 15.198238 | 0.41220 | 0 | 539 | 16.96035 | 0.2484 | 0 | 319 | 2639 | 12.087912 | 0.38790 | 0 | 101 | 565 | 17.87611 | 0.6539 | 0 | 583 | 3022 | 19.291860 | 0.9349 | 1 | 2186 | 3178 | 68.78540 | 0.7658 | 1 | 2264 | 1609 | 71.0689046 | 0.9266 | 1 | 15 | 0.6625442 | 0.7078 | 0 | 226 | 1390 | 16.258993 | 0.9567 | 1 | 599 | 1390 | 43.09353 | 0.8474 | 1 | 20 | 3178 | 0.6293266 | 0.6292 | 0 | 4.4696 | 0.9558 | 5 | 2.63730 | 0.5864 | 1 | 0.7658 | 0.7588 | 1 | 4.0677 | 0.9762 | 3 | 11.94040 | 0.9387 | 10 | Yes |
34001000500 | 34 | 001 | 000500 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 3483 | 1241 | 1027 | 1938 | 3483 | 55.64169 | 0.9533 | 1 | 124 | 1630 | 7.607362 | 0.5830 | 0 | 227 | 446 | 50.89686 | 0.8549 | 1 | 478 | 581 | 82.27194 | 0.9799 | 1 | 705 | 1027 | 68.64654 | 0.9863 | 1 | 733 | 2077 | 35.29129 | 0.9396 | 1 | 727 | 3258 | 22.31430 | 0.9149 | 1 | 377 | 10.824002 | 0.3081 | 0 | 1055 | 30.28998 | 0.90140 | 1 | 268 | 2401 | 11.16202 | 0.3549 | 0 | 209 | 763 | 27.391874 | 0.7940 | 1 | 911 | 3077 | 29.606760 | 0.9746 | 1 | 3036 | 3483 | 87.16624 | 0.8550 | 1 | 1241 | 52 | 4.190169 | 0.4505 | 0 | 4 | 0.3223207 | 0.6567 | 0 | 113 | 1027 | 11.002921 | 0.9128 | 1 | 422 | 1027 | 41.09056 | 0.8250 | 1 | 0 | 3483 | 0.000000 | 0.3512 | 0 | 4.3771 | 0.9379 | 4 | 3.33300 | 0.8766 | 3 | 0.8550 | 0.8467 | 1 | 3.1962 | 0.8026 | 2 | 11.76130 | 0.9229 | 10 | 3385 | 1185 | 945 | 1682 | 3364 | 50.00000 | 0.9391 | 1 | 72 | 1577 | 4.565631 | 0.4586 | 0 | 185 | 468 | 39.52991 | 0.8332 | 1 | 362 | 477 | 75.89099 | 0.9703 | 1 | 547 | 945 | 57.88360 | 0.9477 | 1 | 592 | 1983 | 29.85376 | 0.9422 | 1 | 738 | 3385 | 21.802068 | 0.9817 | 1 | 240 | 7.090103 | 0.05988 | 0 | 1129 | 33.35303 | 0.9689 | 1 | 135 | 2256 | 5.984043 | 0.04817 | 0 | 110 | 717 | 15.34170 | 0.5822 | 0 | 721 | 3076 | 23.439532 | 0.9569 | 1 | 3029 | 3385 | 89.48301 | 0.8727 | 1 | 1185 | 9 | 0.7594937 | 0.2382 | 0 | 0 | 0.0000000 | 0.3216 | 0 | 103 | 945 | 10.899471 | 0.9072 | 1 | 263 | 945 | 27.83069 | 0.7560 | 1 | 0 | 3385 | 0.0000000 | 0.1517 | 0 | 4.2693 | 0.9283 | 4 | 2.61605 | 0.5709 | 2 | 0.8727 | 0.8648 | 1 | 2.3747 | 0.4357 | 2 | 10.13275 | 0.7921 | 9 | Yes |
34001001100 | 34 | 001 | 001100 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 2204 | 1204 | 1204 | 1185 | 2204 | 53.76588 | 0.9457 | 1 | 219 | 927 | 23.624596 | 0.9830 | 1 | 97 | 172 | 56.39535 | 0.9094 | 1 | 462 | 1032 | 44.76744 | 0.4746 | 0 | 559 | 1204 | 46.42857 | 0.7197 | 0 | 346 | 1440 | 24.02778 | 0.8306 | 1 | 469 | 1942 | 24.15036 | 0.9360 | 1 | 363 | 16.470054 | 0.7020 | 0 | 578 | 26.22505 | 0.74410 | 0 | 442 | 1558 | 28.36970 | 0.9675 | 1 | 247 | 396 | 62.373737 | 0.9898 | 1 | 104 | 2051 | 5.070697 | 0.7260 | 0 | 2118 | 2204 | 96.09800 | 0.9204 | 1 | 1204 | 570 | 47.342193 | 0.8858 | 1 | 0 | 0.0000000 | 0.3251 | 0 | 14 | 1204 | 1.162791 | 0.4877 | 0 | 817 | 1204 | 67.85714 | 0.9413 | 1 | 0 | 2204 | 0.000000 | 0.3512 | 0 | 4.4150 | 0.9451 | 4 | 4.12940 | 0.9805 | 2 | 0.9204 | 0.9114 | 1 | 2.9911 | 0.7243 | 2 | 12.45590 | 0.9597 | 9 | 1950 | 1267 | 1096 | 1131 | 1950 | 58.00000 | 0.9678 | 1 | 66 | 706 | 9.348442 | 0.8395 | 1 | 42 | 101 | 41.58416 | 0.8612 | 1 | 309 | 995 | 31.05528 | 0.1959 | 0 | 351 | 1096 | 32.02555 | 0.4782 | 0 | 510 | 1379 | 36.98332 | 0.9763 | 1 | 155 | 1950 | 7.948718 | 0.7660 | 1 | 392 | 20.102564 | 0.69880 | 0 | 447 | 22.92308 | 0.6712 | 0 | 570 | 1503 | 37.924152 | 0.99200 | 1 | 143 | 374 | 38.23529 | 0.9167 | 1 | 109 | 1841 | 5.920695 | 0.7464 | 0 | 1909 | 1950 | 97.89744 | 0.9529 | 1 | 1267 | 479 | 37.8058406 | 0.8464 | 1 | 0 | 0.0000000 | 0.3216 | 0 | 33 | 1096 | 3.010949 | 0.6446 | 0 | 743 | 1096 | 67.79197 | 0.9414 | 1 | 0 | 1950 | 0.0000000 | 0.1517 | 0 | 4.0278 | 0.8848 | 4 | 4.02510 | 0.9798 | 2 | 0.9529 | 0.9442 | 1 | 2.9057 | 0.6869 | 2 | 11.91150 | 0.9365 | 9 | Yes |
GEOID_2010_trt | FIPS_st | FIPS_county | FIPS_tract | state | state_name | county | region_number | region | division_number | division | E_TOTPOP_10 | E_HU_10 | E_HH_10 | E_POV150_10 | ET_POVSTATUS_10 | EP_POV150_10 | EPL_POV150_10 | F_POV150_10 | E_UNEMP_10 | ET_EMPSTATUS_10 | EP_UNEMP_10 | EPL_UNEMP_10 | F_UNEMP_10 | E_HBURD_OWN_10 | ET_HOUSINGCOST_OWN_10 | EP_HBURD_OWN_10 | EPL_HBURD_OWN_10 | F_HBURD_OWN_10 | E_HBURD_RENT_10 | ET_HOUSINGCOST_RENT_10 | EP_HBURD_RENT_10 | EPL_HBURD_RENT_10 | F_HBURD_RENT_10 | E_HBURD_10 | ET_HOUSINGCOST_10 | EP_HBURD_10 | EPL_HBURD_10 | F_HBURD_10 | E_NOHSDP_10 | ET_EDSTATUS_10 | EP_NOHSDP_10 | EPL_NOHSDP_10 | F_NOHSDP_10 | E_UNINSUR_12 | ET_INSURSTATUS_12 | EP_UNINSUR_12 | EPL_UNINSUR_12 | F_UNINSUR_12 | E_AGE65_10 | EP_AGE65_10 | EPL_AGE65_10 | F_AGE65_10 | E_AGE17_10 | EP_AGE17_10 | EPL_AGE17_10 | F_AGE17_10 | E_DISABL_12 | ET_DISABLSTATUS_12 | EP_DISABL_12 | EPL_DISABL_12 | F_DISABL_12 | E_SNGPNT_10 | ET_FAMILIES_10 | EP_SNGPNT_10 | EPL_SNGPNT_10 | F_SNGPNT_10 | E_LIMENG_10 | ET_POPAGE5UP_10 | EP_LIMENG_10 | EPL_LIMENG_10 | F_LIMENG_10 | E_MINRTY_10 | ET_POPETHRACE_10 | EP_MINRTY_10 | EPL_MINRTY_10 | F_MINRTY_10 | E_STRHU_10 | E_MUNIT_10 | EP_MUNIT_10 | EPL_MUNIT_10 | F_MUNIT_10 | E_MOBILE_10 | EP_MOBILE_10 | EPL_MOBILE_10 | F_MOBILE_10 | E_CROWD_10 | ET_OCCUPANTS_10 | EP_CROWD_10 | EPL_CROWD_10 | F_CROWD_10 | E_NOVEH_10 | ET_KNOWNVEH_10 | EP_NOVEH_10 | EPL_NOVEH_10 | F_NOVEH_10 | E_GROUPQ_10 | ET_HHTYPE_10 | EP_GROUPQ_10 | EPL_GROUPQ_10 | F_GROUPQ_10 | SPL_THEME1_10 | RPL_THEME1_10 | F_THEME1_10 | SPL_THEME2_10 | RPL_THEME2_10 | F_THEME2_10 | SPL_THEME3_10 | RPL_THEME3_10 | F_THEME3_10 | SPL_THEME4_10 | RPL_THEME4_10 | F_THEME4_10 | SPL_THEMES_10 | RPL_THEMES_10 | F_TOTAL_10 | E_TOTPOP_20 | E_HU_20 | E_HH_20 | E_POV150_20 | ET_POVSTATUS_20 | EP_POV150_20 | EPL_POV150_20 | F_POV150_20 | E_UNEMP_20 | ET_EMPSTATUS_20 | EP_UNEMP_20 | EPL_UNEMP_20 | F_UNEMP_20 | E_HBURD_OWN_20 | ET_HOUSINGCOST_OWN_20 | EP_HBURD_OWN_20 | EPL_HBURD_OWN_20 | F_HBURD_OWN_20 | E_HBURD_RENT_20 | ET_HOUSINGCOST_RENT_20 | EP_HBURD_RENT_20 | EPL_HBURD_RENT_20 | F_HBURD_RENT_20 | E_HBURD_20 | ET_HOUSINGCOST_20 | EP_HBURD_20 | EPL_HBURD_20 | F_HBURD_20 | E_NOHSDP_20 | ET_EDSTATUS_20 | EP_NOHSDP_20 | EPL_NOHSDP_20 | F_NOHSDP_20 | E_UNINSUR_20 | ET_INSURSTATUS_20 | EP_UNINSUR_20 | EPL_UNINSUR_20 | F_UNINSUR_20 | E_AGE65_20 | EP_AGE65_20 | EPL_AGE65_20 | F_AGE65_20 | E_AGE17_20 | EP_AGE17_20 | EPL_AGE17_20 | F_AGE17_20 | E_DISABL_20 | ET_DISABLSTATUS_20 | EP_DISABL_20 | EPL_DISABL_20 | F_DISABL_20 | E_SNGPNT_20 | ET_FAMILIES_20 | EP_SNGPNT_20 | EPL_SNGPNT_20 | F_SNGPNT_20 | E_LIMENG_20 | ET_POPAGE5UP_20 | EP_LIMENG_20 | EPL_LIMENG_20 | F_LIMENG_20 | E_MINRTY_20 | ET_POPETHRACE_20 | EP_MINRTY_20 | EPL_MINRTY_20 | F_MINRTY_20 | E_STRHU_20 | E_MUNIT_20 | EP_MUNIT_20 | EPL_MUNIT_20 | F_MUNIT_20 | E_MOBILE_20 | EP_MOBILE_20 | EPL_MOBILE_20 | F_MOBILE_20 | E_CROWD_20 | ET_OCCUPANTS_20 | EP_CROWD_20 | EPL_CROWD_20 | F_CROWD_20 | E_NOVEH_20 | ET_KNOWNVEH_20 | EP_NOVEH_20 | EPL_NOVEH_20 | F_NOVEH_20 | E_GROUPQ_20 | ET_HHTYPE_20 | EP_GROUPQ_20 | EPL_GROUPQ_20 | F_GROUPQ_20 | SPL_THEME1_20 | RPL_THEME1_20 | F_THEME1_20 | SPL_THEME2_20 | RPL_THEME2_20 | F_THEME2_20 | SPL_THEME3_20 | RPL_THEME3_20 | F_THEME3_20 | SPL_THEME4_20 | RPL_THEME4_20 | F_THEME4_20 | SPL_THEMES_20 | RPL_THEMES_20 | F_TOTAL_20 | nmtc_eligibility |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
01001020200 | 01 | 001 | 020200 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 2020 | 816 | 730 | 495 | 1992 | 24.84940 | 0.5954 | 0 | 68 | 834 | 8.153477 | 0.57540 | 0 | 49 | 439 | 11.16173 | 0.02067 | 0 | 105 | 291 | 36.08247 | 0.30190 | 0 | 154 | 730 | 21.09589 | 0.09312 | 0 | 339 | 1265 | 26.79842 | 0.8392 | 1 | 313 | 2012 | 15.55666 | 0.6000 | 0 | 204 | 10.09901 | 0.3419 | 0 | 597 | 29.55446 | 0.8192 | 1 | 359 | 1515 | 23.69637 | 0.8791 | 1 | 132 | 456 | 28.947368 | 0.8351 | 1 | 15 | 1890 | 0.7936508 | 0.40130 | 0 | 1243 | 2020 | 61.53465 | 0.7781 | 1 | 816 | 0 | 0.0000000 | 0.1224 | 0 | 34 | 4.1666667 | 0.6664 | 0 | 13 | 730 | 1.780822 | 0.5406 | 0 | 115 | 730 | 15.753425 | 0.8382 | 1 | 0 | 2020 | 0.0000 | 0.3640 | 0 | 2.70312 | 0.5665 | 1 | 3.27660 | 0.8614 | 3 | 0.7781 | 0.7709 | 1 | 2.5316 | 0.5047 | 1 | 9.28942 | 0.6832 | 6 | 1757 | 720 | 573 | 384 | 1511 | 25.41363 | 0.6427 | 0 | 29 | 717 | 4.044630 | 0.4132 | 0 | 33 | 392 | 8.418367 | 0.03542 | 0 | 116 | 181 | 64.08840 | 0.9086 | 1 | 149 | 573 | 26.00349 | 0.40410 | 0 | 139 | 1313 | 10.58644 | 0.5601 | 0 | 91 | 1533 | 5.936073 | 0.4343 | 0 | 284 | 16.163916 | 0.5169 | 0 | 325 | 18.49744 | 0.2851 | 0 | 164 | 1208.000 | 13.57616 | 0.4127 | 0 | 42 | 359.0000 | 11.699164 | 0.3998 | 0 | 0 | 1651 | 0.0000000 | 0.09479 | 0 | 1116 | 1757.000 | 63.51736 | 0.7591 | 1 | 720 | 3 | 0.4166667 | 0.2470 | 0 | 5 | 0.6944444 | 0.5106 | 0 | 9 | 573 | 1.5706806 | 0.4688 | 0 | 57 | 573.000 | 9.947644 | 0.7317 | 0 | 212 | 1757 | 12.0660216 | 0.9549 | 1 | 2.45440 | 0.4888 | 0 | 1.70929 | 0.1025 | 0 | 0.7591 | 0.7527 | 1 | 2.9130 | 0.6862 | 1 | 7.83579 | 0.4802 | 2 | Yes |
01001020700 | 01 | 001 | 020700 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 2664 | 1254 | 1139 | 710 | 2664 | 26.65165 | 0.6328 | 0 | 29 | 1310 | 2.213741 | 0.05255 | 0 | 134 | 710 | 18.87324 | 0.13890 | 0 | 187 | 429 | 43.58974 | 0.47090 | 0 | 321 | 1139 | 28.18262 | 0.28130 | 0 | 396 | 1852 | 21.38229 | 0.7478 | 0 | 345 | 2878 | 11.98749 | 0.4459 | 0 | 389 | 14.60210 | 0.6417 | 0 | 599 | 22.48499 | 0.4007 | 0 | 510 | 2168 | 23.52399 | 0.8752 | 1 | 228 | 712 | 32.022472 | 0.8712 | 1 | 0 | 2480 | 0.0000000 | 0.09298 | 0 | 694 | 2664 | 26.05105 | 0.5138 | 0 | 1254 | 8 | 0.6379585 | 0.2931 | 0 | 460 | 36.6826156 | 0.9714 | 1 | 0 | 1139 | 0.000000 | 0.1238 | 0 | 125 | 1139 | 10.974539 | 0.7477 | 0 | 0 | 2664 | 0.0000 | 0.3640 | 0 | 2.16035 | 0.4069 | 0 | 2.88178 | 0.6997 | 2 | 0.5138 | 0.5090 | 0 | 2.5000 | 0.4882 | 1 | 8.05593 | 0.5185 | 3 | 3562 | 1313 | 1248 | 1370 | 3528 | 38.83220 | 0.8512 | 1 | 128 | 1562 | 8.194622 | 0.7935 | 1 | 168 | 844 | 19.905213 | 0.44510 | 0 | 237 | 404 | 58.66337 | 0.8359 | 1 | 405 | 1248 | 32.45192 | 0.60420 | 0 | 396 | 2211 | 17.91045 | 0.7857 | 1 | 444 | 3547 | 12.517620 | 0.7758 | 1 | 355 | 9.966311 | 0.1800 | 0 | 954 | 26.78271 | 0.7923 | 1 | 629 | 2593.000 | 24.25762 | 0.8730 | 1 | 171 | 797.0000 | 21.455458 | 0.7186 | 0 | 0 | 3211 | 0.0000000 | 0.09479 | 0 | 1009 | 3562.000 | 28.32678 | 0.4668 | 0 | 1313 | 14 | 1.0662605 | 0.3165 | 0 | 443 | 33.7395278 | 0.9663 | 1 | 73 | 1248 | 5.8493590 | 0.8211 | 1 | 17 | 1248.000 | 1.362180 | 0.1554 | 0 | 112 | 3562 | 3.1443010 | 0.8514 | 1 | 3.81040 | 0.8569 | 4 | 2.65869 | 0.5847 | 2 | 0.4668 | 0.4629 | 0 | 3.1107 | 0.7714 | 3 | 10.04659 | 0.7851 | 9 | Yes |
01001021100 | 01 | 001 | 021100 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 3298 | 1502 | 1323 | 860 | 3298 | 26.07641 | 0.6211 | 0 | 297 | 1605 | 18.504673 | 0.94340 | 1 | 250 | 1016 | 24.60630 | 0.32070 | 0 | 74 | 307 | 24.10423 | 0.11920 | 0 | 324 | 1323 | 24.48980 | 0.17380 | 0 | 710 | 2231 | 31.82429 | 0.8976 | 1 | 654 | 3565 | 18.34502 | 0.7018 | 0 | 411 | 12.46210 | 0.5001 | 0 | 738 | 22.37720 | 0.3934 | 0 | 936 | 2861 | 32.71583 | 0.9807 | 1 | 138 | 825 | 16.727273 | 0.5715 | 0 | 9 | 3155 | 0.2852615 | 0.25010 | 0 | 1979 | 3298 | 60.00606 | 0.7703 | 1 | 1502 | 14 | 0.9320905 | 0.3234 | 0 | 659 | 43.8748336 | 0.9849 | 1 | 44 | 1323 | 3.325775 | 0.7062 | 0 | 137 | 1323 | 10.355253 | 0.7313 | 0 | 0 | 3298 | 0.0000 | 0.3640 | 0 | 3.33770 | 0.7351 | 2 | 2.69580 | 0.6028 | 1 | 0.7703 | 0.7631 | 1 | 3.1098 | 0.7827 | 1 | 9.91360 | 0.7557 | 5 | 3499 | 1825 | 1462 | 1760 | 3499 | 50.30009 | 0.9396 | 1 | 42 | 966 | 4.347826 | 0.4539 | 0 | 426 | 1274 | 33.437991 | 0.85200 | 1 | 52 | 188 | 27.65957 | 0.1824 | 0 | 478 | 1462 | 32.69494 | 0.61110 | 0 | 422 | 2488 | 16.96141 | 0.7638 | 1 | 497 | 3499 | 14.204058 | 0.8246 | 1 | 853 | 24.378394 | 0.8688 | 1 | 808 | 23.09231 | 0.5829 | 0 | 908 | 2691.100 | 33.74084 | 0.9808 | 1 | 179 | 811.6985 | 22.052524 | 0.7323 | 0 | 8 | 3248 | 0.2463054 | 0.26220 | 0 | 1986 | 3498.713 | 56.76373 | 0.7175 | 0 | 1825 | 29 | 1.5890411 | 0.3551 | 0 | 576 | 31.5616438 | 0.9594 | 1 | 88 | 1462 | 6.0191518 | 0.8269 | 1 | 148 | 1461.993 | 10.123166 | 0.7364 | 0 | 38 | 3499 | 1.0860246 | 0.7013 | 0 | 3.59300 | 0.8073 | 3 | 3.42700 | 0.9156 | 2 | 0.7175 | 0.7114 | 0 | 3.5791 | 0.9216 | 2 | 11.31660 | 0.9150 | 7 | Yes |
01003010200 | 01 | 003 | 010200 | AL | Alabama | Baldwin County | 3 | South Region | 6 | East South Central Division | 2612 | 1220 | 1074 | 338 | 2605 | 12.97505 | 0.2907 | 0 | 44 | 1193 | 3.688181 | 0.14720 | 0 | 172 | 928 | 18.53448 | 0.13090 | 0 | 31 | 146 | 21.23288 | 0.09299 | 0 | 203 | 1074 | 18.90130 | 0.05657 | 0 | 455 | 1872 | 24.30556 | 0.8016 | 1 | 456 | 2730 | 16.70330 | 0.6445 | 0 | 401 | 15.35222 | 0.6847 | 0 | 563 | 21.55436 | 0.3406 | 0 | 410 | 2038 | 20.11776 | 0.7755 | 1 | 64 | 779 | 8.215661 | 0.2181 | 0 | 0 | 2510 | 0.0000000 | 0.09298 | 0 | 329 | 2612 | 12.59571 | 0.3113 | 0 | 1220 | 38 | 3.1147541 | 0.4648 | 0 | 385 | 31.5573770 | 0.9545 | 1 | 20 | 1074 | 1.862197 | 0.5509 | 0 | 43 | 1074 | 4.003724 | 0.4088 | 0 | 0 | 2612 | 0.0000 | 0.3640 | 0 | 1.94057 | 0.3398 | 1 | 2.11188 | 0.2802 | 1 | 0.3113 | 0.3084 | 0 | 2.7430 | 0.6129 | 1 | 7.10675 | 0.3771 | 3 | 2928 | 1312 | 1176 | 884 | 2928 | 30.19126 | 0.7334 | 0 | 29 | 1459 | 1.987663 | 0.1356 | 0 | 71 | 830 | 8.554217 | 0.03726 | 0 | 134 | 346 | 38.72832 | 0.3964 | 0 | 205 | 1176 | 17.43197 | 0.12010 | 0 | 294 | 2052 | 14.32749 | 0.6940 | 0 | 219 | 2925 | 7.487179 | 0.5423 | 0 | 556 | 18.989071 | 0.6705 | 0 | 699 | 23.87295 | 0.6339 | 0 | 489 | 2226.455 | 21.96317 | 0.8122 | 1 | 191 | 783.8820 | 24.365914 | 0.7799 | 1 | 0 | 2710 | 0.0000000 | 0.09479 | 0 | 398 | 2927.519 | 13.59513 | 0.2511 | 0 | 1312 | 13 | 0.9908537 | 0.3111 | 0 | 400 | 30.4878049 | 0.9557 | 1 | 6 | 1176 | 0.5102041 | 0.2590 | 0 | 81 | 1176.202 | 6.886570 | 0.6115 | 0 | 7 | 2928 | 0.2390710 | 0.4961 | 0 | 2.22540 | 0.4183 | 0 | 2.99129 | 0.7634 | 2 | 0.2511 | 0.2490 | 0 | 2.6334 | 0.5496 | 1 | 8.10119 | 0.5207 | 3 | Yes |
01003010500 | 01 | 003 | 010500 | AL | Alabama | Baldwin County | 3 | South Region | 6 | East South Central Division | 4230 | 1779 | 1425 | 498 | 3443 | 14.46413 | 0.3337 | 0 | 166 | 1625 | 10.215385 | 0.71790 | 0 | 151 | 1069 | 14.12535 | 0.04638 | 0 | 196 | 356 | 55.05618 | 0.73830 | 0 | 347 | 1425 | 24.35088 | 0.17010 | 0 | 707 | 2945 | 24.00679 | 0.7967 | 1 | 528 | 4001 | 13.19670 | 0.5005 | 0 | 619 | 14.63357 | 0.6436 | 0 | 790 | 18.67612 | 0.1937 | 0 | 536 | 3096 | 17.31266 | 0.6572 | 0 | 165 | 920 | 17.934783 | 0.6102 | 0 | 20 | 4021 | 0.4973887 | 0.32320 | 0 | 754 | 4230 | 17.82506 | 0.4023 | 0 | 1779 | 97 | 5.4525014 | 0.5525 | 0 | 8 | 0.4496908 | 0.4600 | 0 | 63 | 1425 | 4.421053 | 0.7762 | 1 | 90 | 1425 | 6.315790 | 0.5691 | 0 | 787 | 4230 | 18.6052 | 0.9649 | 1 | 2.51890 | 0.5121 | 1 | 2.42790 | 0.4539 | 0 | 0.4023 | 0.3986 | 0 | 3.3227 | 0.8628 | 2 | 8.67180 | 0.6054 | 3 | 5877 | 1975 | 1836 | 820 | 5244 | 15.63692 | 0.3902 | 0 | 90 | 2583 | 3.484321 | 0.3361 | 0 | 159 | 1345 | 11.821561 | 0.10530 | 0 | 139 | 491 | 28.30957 | 0.1924 | 0 | 298 | 1836 | 16.23094 | 0.09053 | 0 | 570 | 4248 | 13.41808 | 0.6669 | 0 | 353 | 5247 | 6.727654 | 0.4924 | 0 | 1109 | 18.870172 | 0.6645 | 0 | 1144 | 19.46571 | 0.3411 | 0 | 717 | 4102.545 | 17.47696 | 0.6332 | 0 | 103 | 1286.1180 | 8.008596 | 0.2341 | 0 | 0 | 5639 | 0.0000000 | 0.09479 | 0 | 868 | 5877.481 | 14.76823 | 0.2709 | 0 | 1975 | 26 | 1.3164557 | 0.3359 | 0 | 45 | 2.2784810 | 0.6271 | 0 | 9 | 1836 | 0.4901961 | 0.2540 | 0 | 116 | 1835.798 | 6.318779 | 0.5811 | 0 | 633 | 5877 | 10.7708014 | 0.9507 | 1 | 1.97613 | 0.3410 | 0 | 1.96769 | 0.1961 | 0 | 0.2709 | 0.2686 | 0 | 2.7488 | 0.6077 | 1 | 6.96352 | 0.3406 | 1 | Yes |
01003010600 | 01 | 003 | 010600 | AL | Alabama | Baldwin County | 3 | South Region | 6 | East South Central Division | 3724 | 1440 | 1147 | 1973 | 3724 | 52.98067 | 0.9342 | 1 | 142 | 1439 | 9.867964 | 0.69680 | 0 | 235 | 688 | 34.15698 | 0.62950 | 0 | 187 | 459 | 40.74074 | 0.40290 | 0 | 422 | 1147 | 36.79163 | 0.55150 | 0 | 497 | 1876 | 26.49254 | 0.8354 | 1 | 511 | 3661 | 13.95794 | 0.5334 | 0 | 246 | 6.60580 | 0.1481 | 0 | 1256 | 33.72718 | 0.9305 | 1 | 496 | 2522 | 19.66693 | 0.7587 | 1 | 274 | 838 | 32.696897 | 0.8779 | 1 | 32 | 3479 | 0.9198045 | 0.42810 | 0 | 2606 | 3724 | 69.97852 | 0.8184 | 1 | 1440 | 21 | 1.4583333 | 0.3683 | 0 | 321 | 22.2916667 | 0.9036 | 1 | 97 | 1147 | 8.456844 | 0.8956 | 1 | 167 | 1147 | 14.559721 | 0.8209 | 1 | 0 | 3724 | 0.0000 | 0.3640 | 0 | 3.55130 | 0.7859 | 2 | 3.14330 | 0.8145 | 3 | 0.8184 | 0.8108 | 1 | 3.3524 | 0.8725 | 3 | 10.86540 | 0.8550 | 9 | 4115 | 1534 | 1268 | 1676 | 3997 | 41.93145 | 0.8814 | 1 | 294 | 1809 | 16.252073 | 0.9674 | 1 | 341 | 814 | 41.891892 | 0.94320 | 1 | 204 | 454 | 44.93392 | 0.5438 | 0 | 545 | 1268 | 42.98107 | 0.83620 | 1 | 624 | 2425 | 25.73196 | 0.9002 | 1 | 994 | 4115 | 24.155529 | 0.9602 | 1 | 642 | 15.601458 | 0.4841 | 0 | 1126 | 27.36331 | 0.8175 | 1 | 568 | 2989.000 | 19.00301 | 0.7045 | 0 | 212 | 715.0000 | 29.650350 | 0.8592 | 1 | 56 | 3825 | 1.4640523 | 0.53120 | 0 | 2715 | 4115.000 | 65.97813 | 0.7732 | 1 | 1534 | 0 | 0.0000000 | 0.1079 | 0 | 529 | 34.4850065 | 0.9685 | 1 | 101 | 1268 | 7.9652997 | 0.8795 | 1 | 89 | 1268.000 | 7.018927 | 0.6184 | 0 | 17 | 4115 | 0.4131227 | 0.5707 | 0 | 4.54540 | 0.9754 | 5 | 3.39650 | 0.9081 | 2 | 0.7732 | 0.7667 | 1 | 3.1450 | 0.7858 | 2 | 11.86010 | 0.9520 | 10 | Yes |
Find count of pre2010 NMTC projects:
# Join divisional data to nmtc_awards_pre2010, set count to 0 if no data
svi_divisional_nmtc_eligible <-
left_join(svi_divisional_nmtc_eligible, nmtc_awards_pre2010, join_by("GEOID_2010_trt" == "GEOID10")) %>%
mutate(pre10_nmtc_project_cnt = if_else(is.na(pre10_nmtc_project_cnt), 0, pre10_nmtc_project_cnt)) %>%
mutate(pre10_nmtc_dollars = if_else(is.na(pre10_nmtc_dollars), 0, pre10_nmtc_dollars)) %>%
mutate(pre10_nmtc_dollars_formatted = if_else(is.na(pre10_nmtc_dollars_formatted), "$0", pre10_nmtc_dollars_formatted))
# View table
svi_divisional_nmtc_eligible %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt | FIPS_st | FIPS_county | FIPS_tract | state | state_name | county | region_number | region | division_number | division | E_TOTPOP_10 | E_HU_10 | E_HH_10 | E_POV150_10 | ET_POVSTATUS_10 | EP_POV150_10 | EPL_POV150_10 | F_POV150_10 | E_UNEMP_10 | ET_EMPSTATUS_10 | EP_UNEMP_10 | EPL_UNEMP_10 | F_UNEMP_10 | E_HBURD_OWN_10 | ET_HOUSINGCOST_OWN_10 | EP_HBURD_OWN_10 | EPL_HBURD_OWN_10 | F_HBURD_OWN_10 | E_HBURD_RENT_10 | ET_HOUSINGCOST_RENT_10 | EP_HBURD_RENT_10 | EPL_HBURD_RENT_10 | F_HBURD_RENT_10 | E_HBURD_10 | ET_HOUSINGCOST_10 | EP_HBURD_10 | EPL_HBURD_10 | F_HBURD_10 | E_NOHSDP_10 | ET_EDSTATUS_10 | EP_NOHSDP_10 | EPL_NOHSDP_10 | F_NOHSDP_10 | E_UNINSUR_12 | ET_INSURSTATUS_12 | EP_UNINSUR_12 | EPL_UNINSUR_12 | F_UNINSUR_12 | E_AGE65_10 | EP_AGE65_10 | EPL_AGE65_10 | F_AGE65_10 | E_AGE17_10 | EP_AGE17_10 | EPL_AGE17_10 | F_AGE17_10 | E_DISABL_12 | ET_DISABLSTATUS_12 | EP_DISABL_12 | EPL_DISABL_12 | F_DISABL_12 | E_SNGPNT_10 | ET_FAMILIES_10 | EP_SNGPNT_10 | EPL_SNGPNT_10 | F_SNGPNT_10 | E_LIMENG_10 | ET_POPAGE5UP_10 | EP_LIMENG_10 | EPL_LIMENG_10 | F_LIMENG_10 | E_MINRTY_10 | ET_POPETHRACE_10 | EP_MINRTY_10 | EPL_MINRTY_10 | F_MINRTY_10 | E_STRHU_10 | E_MUNIT_10 | EP_MUNIT_10 | EPL_MUNIT_10 | F_MUNIT_10 | E_MOBILE_10 | EP_MOBILE_10 | EPL_MOBILE_10 | F_MOBILE_10 | E_CROWD_10 | ET_OCCUPANTS_10 | EP_CROWD_10 | EPL_CROWD_10 | F_CROWD_10 | E_NOVEH_10 | ET_KNOWNVEH_10 | EP_NOVEH_10 | EPL_NOVEH_10 | F_NOVEH_10 | E_GROUPQ_10 | ET_HHTYPE_10 | EP_GROUPQ_10 | EPL_GROUPQ_10 | F_GROUPQ_10 | SPL_THEME1_10 | RPL_THEME1_10 | F_THEME1_10 | SPL_THEME2_10 | RPL_THEME2_10 | F_THEME2_10 | SPL_THEME3_10 | RPL_THEME3_10 | F_THEME3_10 | SPL_THEME4_10 | RPL_THEME4_10 | F_THEME4_10 | SPL_THEMES_10 | RPL_THEMES_10 | F_TOTAL_10 | E_TOTPOP_20 | E_HU_20 | E_HH_20 | E_POV150_20 | ET_POVSTATUS_20 | EP_POV150_20 | EPL_POV150_20 | F_POV150_20 | E_UNEMP_20 | ET_EMPSTATUS_20 | EP_UNEMP_20 | EPL_UNEMP_20 | F_UNEMP_20 | E_HBURD_OWN_20 | ET_HOUSINGCOST_OWN_20 | EP_HBURD_OWN_20 | EPL_HBURD_OWN_20 | F_HBURD_OWN_20 | E_HBURD_RENT_20 | ET_HOUSINGCOST_RENT_20 | EP_HBURD_RENT_20 | EPL_HBURD_RENT_20 | F_HBURD_RENT_20 | E_HBURD_20 | ET_HOUSINGCOST_20 | EP_HBURD_20 | EPL_HBURD_20 | F_HBURD_20 | E_NOHSDP_20 | ET_EDSTATUS_20 | EP_NOHSDP_20 | EPL_NOHSDP_20 | F_NOHSDP_20 | E_UNINSUR_20 | ET_INSURSTATUS_20 | EP_UNINSUR_20 | EPL_UNINSUR_20 | F_UNINSUR_20 | E_AGE65_20 | EP_AGE65_20 | EPL_AGE65_20 | F_AGE65_20 | E_AGE17_20 | EP_AGE17_20 | EPL_AGE17_20 | F_AGE17_20 | E_DISABL_20 | ET_DISABLSTATUS_20 | EP_DISABL_20 | EPL_DISABL_20 | F_DISABL_20 | E_SNGPNT_20 | ET_FAMILIES_20 | EP_SNGPNT_20 | EPL_SNGPNT_20 | F_SNGPNT_20 | E_LIMENG_20 | ET_POPAGE5UP_20 | EP_LIMENG_20 | EPL_LIMENG_20 | F_LIMENG_20 | E_MINRTY_20 | ET_POPETHRACE_20 | EP_MINRTY_20 | EPL_MINRTY_20 | F_MINRTY_20 | E_STRHU_20 | E_MUNIT_20 | EP_MUNIT_20 | EPL_MUNIT_20 | F_MUNIT_20 | E_MOBILE_20 | EP_MOBILE_20 | EPL_MOBILE_20 | F_MOBILE_20 | E_CROWD_20 | ET_OCCUPANTS_20 | EP_CROWD_20 | EPL_CROWD_20 | F_CROWD_20 | E_NOVEH_20 | ET_KNOWNVEH_20 | EP_NOVEH_20 | EPL_NOVEH_20 | F_NOVEH_20 | E_GROUPQ_20 | ET_HHTYPE_20 | EP_GROUPQ_20 | EPL_GROUPQ_20 | F_GROUPQ_20 | SPL_THEME1_20 | RPL_THEME1_20 | F_THEME1_20 | SPL_THEME2_20 | RPL_THEME2_20 | F_THEME2_20 | SPL_THEME3_20 | RPL_THEME3_20 | F_THEME3_20 | SPL_THEME4_20 | RPL_THEME4_20 | F_THEME4_20 | SPL_THEMES_20 | RPL_THEMES_20 | F_TOTAL_20 | nmtc_eligibility | pre10_nmtc_project_cnt | pre10_nmtc_dollars | pre10_nmtc_dollars_formatted |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
34001000100 | 34 | 001 | 000100 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 2907 | 1088 | 983 | 1127 | 2907 | 38.76849 | 0.8482 | 1 | 144 | 1433 | 10.048849 | 0.7544 | 1 | 280 | 435 | 64.36782 | 0.9529 | 1 | 204 | 548 | 37.22628 | 0.2998 | 0 | 484 | 983 | 49.23703 | 0.7813 | 1 | 468 | 1759 | 26.60603 | 0.8634 | 1 | 532 | 2543 | 20.92017 | 0.8978 | 1 | 250 | 8.599931 | 0.1777 | 0 | 944 | 32.47334 | 0.94170 | 1 | 186 | 1851 | 10.04862 | 0.2706 | 0 | 266 | 678 | 39.233038 | 0.8981 | 1 | 177 | 2611 | 6.779012 | 0.7778 | 1 | 1928 | 2907 | 66.32267 | 0.7743 | 1 | 1088 | 113 | 10.386029 | 0.6229 | 0 | 9 | 0.8272059 | 0.7223 | 0 | 80 | 983 | 8.138352 | 0.8657 | 1 | 265 | 983 | 26.95829 | 0.7354 | 0 | 0 | 2907 | 0.000000 | 0.3512 | 0 | 4.1451 | 0.8935 | 5 | 3.06590 | 0.7944 | 3 | 0.7743 | 0.7667 | 1 | 3.2975 | 0.8414 | 1 | 11.28280 | 0.8862 | 10 | 2157 | 941 | 784 | 1182 | 2157 | 54.79833 | 0.9571 | 1 | 242 | 1058 | 22.873346 | 0.9922 | 1 | 215 | 342 | 62.86550 | 0.9780 | 1 | 316 | 442 | 71.49321 | 0.9481 | 1 | 531 | 784 | 67.72959 | 0.9893 | 1 | 396 | 1274 | 31.08320 | 0.9497 | 1 | 266 | 2157 | 12.331943 | 0.9041 | 1 | 185 | 8.576727 | 0.09430 | 0 | 552 | 25.59110 | 0.8128 | 1 | 297 | 1605 | 18.504673 | 0.74880 | 0 | 83 | 510 | 16.27451 | 0.6090 | 0 | 251 | 2020 | 12.425743 | 0.8710 | 1 | 1852 | 2157 | 85.85999 | 0.8476 | 1 | 941 | 118 | 12.5398512 | 0.6385 | 0 | 0 | 0.0000000 | 0.3216 | 0 | 67 | 784 | 8.545918 | 0.8657 | 1 | 212 | 784 | 27.04082 | 0.7502 | 1 | 0 | 2157 | 0.0000000 | 0.1517 | 0 | 4.7924 | 0.9850 | 5 | 3.13590 | 0.8217 | 2 | 0.8476 | 0.8400 | 1 | 2.7277 | 0.6085 | 2 | 11.50360 | 0.9104 | 10 | Yes | 0 | 0 | $0 |
34001000200 | 34 | 001 | 000200 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 3189 | 2217 | 1473 | 519 | 3189 | 16.27469 | 0.4806 | 0 | 109 | 1558 | 6.996149 | 0.5179 | 0 | 573 | 955 | 60.00000 | 0.9323 | 1 | 199 | 518 | 38.41699 | 0.3261 | 0 | 772 | 1473 | 52.41005 | 0.8418 | 1 | 405 | 2579 | 15.70376 | 0.6491 | 0 | 484 | 3547 | 13.64533 | 0.7154 | 0 | 847 | 26.560050 | 0.9629 | 1 | 436 | 13.67200 | 0.08181 | 0 | 608 | 3005 | 20.23295 | 0.8466 | 1 | 42 | 857 | 4.900817 | 0.1204 | 0 | 422 | 3072 | 13.736979 | 0.8799 | 1 | 1792 | 3189 | 56.19316 | 0.7390 | 0 | 2217 | 901 | 40.640505 | 0.8693 | 1 | 0 | 0.0000000 | 0.3251 | 0 | 48 | 1473 | 3.258656 | 0.7064 | 0 | 250 | 1473 | 16.97217 | 0.6444 | 0 | 0 | 3189 | 0.000000 | 0.3512 | 0 | 3.2048 | 0.6963 | 1 | 2.89161 | 0.7231 | 3 | 0.7390 | 0.7317 | 0 | 2.8964 | 0.6887 | 1 | 9.73181 | 0.7340 | 5 | 3510 | 2046 | 1353 | 1021 | 3510 | 29.08832 | 0.7682 | 1 | 121 | 1852 | 6.533477 | 0.6717 | 0 | 343 | 696 | 49.28161 | 0.9273 | 1 | 416 | 657 | 63.31811 | 0.8696 | 1 | 759 | 1353 | 56.09756 | 0.9321 | 1 | 553 | 2338 | 23.65269 | 0.8871 | 1 | 354 | 3510 | 10.085470 | 0.8530 | 1 | 643 | 18.319088 | 0.60310 | 0 | 1002 | 28.54701 | 0.9055 | 1 | 450 | 2508 | 17.942584 | 0.72330 | 0 | 237 | 786 | 30.15267 | 0.8539 | 1 | 534 | 3375 | 15.822222 | 0.9062 | 1 | 2534 | 3510 | 72.19373 | 0.7818 | 1 | 2046 | 906 | 44.2815249 | 0.8690 | 1 | 0 | 0.0000000 | 0.3216 | 0 | 119 | 1353 | 8.795270 | 0.8711 | 1 | 324 | 1353 | 23.94678 | 0.7255 | 0 | 0 | 3510 | 0.0000000 | 0.1517 | 0 | 4.1121 | 0.9003 | 4 | 3.99200 | 0.9781 | 3 | 0.7818 | 0.7747 | 1 | 2.9389 | 0.7011 | 2 | 11.82480 | 0.9310 | 10 | Yes | 0 | 0 | $0 |
34001000300 | 34 | 001 | 000300 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 3997 | 1823 | 1357 | 1401 | 3968 | 35.30746 | 0.8164 | 1 | 382 | 2238 | 17.068811 | 0.9376 | 1 | 176 | 329 | 53.49544 | 0.8855 | 1 | 604 | 1028 | 58.75486 | 0.7947 | 1 | 780 | 1357 | 57.47973 | 0.9165 | 1 | 920 | 2677 | 34.36683 | 0.9346 | 1 | 1351 | 4149 | 32.56206 | 0.9811 | 1 | 314 | 7.855892 | 0.1437 | 0 | 937 | 23.44258 | 0.55900 | 0 | 319 | 3054 | 10.44532 | 0.3000 | 0 | 187 | 782 | 23.913044 | 0.7498 | 0 | 1080 | 3671 | 29.419777 | 0.9742 | 1 | 3357 | 3997 | 83.98799 | 0.8419 | 1 | 1823 | 363 | 19.912233 | 0.7535 | 1 | 0 | 0.0000000 | 0.3251 | 0 | 150 | 1357 | 11.053795 | 0.9136 | 1 | 651 | 1357 | 47.97347 | 0.8585 | 1 | 0 | 3997 | 0.000000 | 0.3512 | 0 | 4.5862 | 0.9691 | 5 | 2.72670 | 0.6360 | 1 | 0.8419 | 0.8336 | 1 | 3.2019 | 0.8054 | 3 | 11.35670 | 0.8920 | 10 | 3801 | 1640 | 1226 | 1857 | 3801 | 48.85556 | 0.9333 | 1 | 226 | 1800 | 12.555556 | 0.9267 | 1 | 111 | 280 | 39.64286 | 0.8339 | 1 | 608 | 946 | 64.27061 | 0.8842 | 1 | 719 | 1226 | 58.64600 | 0.9528 | 1 | 650 | 2275 | 28.57143 | 0.9337 | 1 | 1027 | 3801 | 27.019206 | 0.9914 | 1 | 380 | 9.997369 | 0.14040 | 0 | 1223 | 32.17574 | 0.9607 | 1 | 219 | 2578 | 8.494957 | 0.15680 | 0 | 268 | 909 | 29.48295 | 0.8456 | 1 | 940 | 3400 | 27.647059 | 0.9728 | 1 | 3318 | 3801 | 87.29282 | 0.8579 | 1 | 1640 | 262 | 15.9756098 | 0.6917 | 0 | 0 | 0.0000000 | 0.3216 | 0 | 124 | 1226 | 10.114192 | 0.8955 | 1 | 477 | 1226 | 38.90701 | 0.8258 | 1 | 0 | 3801 | 0.0000000 | 0.1517 | 0 | 4.7379 | 0.9829 | 5 | 3.07630 | 0.8013 | 3 | 0.8579 | 0.8501 | 1 | 2.8863 | 0.6781 | 2 | 11.55840 | 0.9150 | 11 | Yes | 0 | 0 | $0 |
34001000400 | 34 | 001 | 000400 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 2902 | 2683 | 1401 | 1172 | 2902 | 40.38594 | 0.8615 | 1 | 190 | 1389 | 13.678906 | 0.8811 | 1 | 364 | 707 | 51.48515 | 0.8627 | 1 | 507 | 694 | 73.05476 | 0.9503 | 1 | 871 | 1401 | 62.16988 | 0.9572 | 1 | 481 | 1981 | 24.28067 | 0.8339 | 1 | 674 | 3204 | 21.03620 | 0.8998 | 1 | 434 | 14.955203 | 0.6083 | 0 | 596 | 20.53756 | 0.33980 | 0 | 426 | 2607 | 16.34062 | 0.6886 | 0 | 111 | 652 | 17.024540 | 0.6204 | 0 | 215 | 2736 | 7.858187 | 0.8008 | 1 | 1792 | 2902 | 61.75052 | 0.7584 | 1 | 2683 | 2049 | 76.369735 | 0.9401 | 1 | 0 | 0.0000000 | 0.3251 | 0 | 69 | 1401 | 4.925053 | 0.7847 | 1 | 511 | 1401 | 36.47395 | 0.7992 | 1 | 72 | 2902 | 2.481048 | 0.8114 | 1 | 4.4335 | 0.9468 | 5 | 3.05790 | 0.7908 | 1 | 0.7584 | 0.7510 | 1 | 3.6605 | 0.9391 | 4 | 11.91030 | 0.9339 | 11 | 3178 | 2264 | 1390 | 1508 | 3176 | 47.48111 | 0.9246 | 1 | 172 | 1804 | 9.534368 | 0.8460 | 1 | 205 | 468 | 43.80342 | 0.8858 | 1 | 622 | 922 | 67.46204 | 0.9192 | 1 | 827 | 1390 | 59.49640 | 0.9587 | 1 | 364 | 2076 | 17.53372 | 0.8013 | 1 | 476 | 3178 | 14.977974 | 0.9390 | 1 | 483 | 15.198238 | 0.41220 | 0 | 539 | 16.96035 | 0.2484 | 0 | 319 | 2639 | 12.087912 | 0.38790 | 0 | 101 | 565 | 17.87611 | 0.6539 | 0 | 583 | 3022 | 19.291860 | 0.9349 | 1 | 2186 | 3178 | 68.78540 | 0.7658 | 1 | 2264 | 1609 | 71.0689046 | 0.9266 | 1 | 15 | 0.6625442 | 0.7078 | 0 | 226 | 1390 | 16.258993 | 0.9567 | 1 | 599 | 1390 | 43.09353 | 0.8474 | 1 | 20 | 3178 | 0.6293266 | 0.6292 | 0 | 4.4696 | 0.9558 | 5 | 2.63730 | 0.5864 | 1 | 0.7658 | 0.7588 | 1 | 4.0677 | 0.9762 | 3 | 11.94040 | 0.9387 | 10 | Yes | 1 | 4200000 | $4,200,000 |
34001000500 | 34 | 001 | 000500 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 3483 | 1241 | 1027 | 1938 | 3483 | 55.64169 | 0.9533 | 1 | 124 | 1630 | 7.607362 | 0.5830 | 0 | 227 | 446 | 50.89686 | 0.8549 | 1 | 478 | 581 | 82.27194 | 0.9799 | 1 | 705 | 1027 | 68.64654 | 0.9863 | 1 | 733 | 2077 | 35.29129 | 0.9396 | 1 | 727 | 3258 | 22.31430 | 0.9149 | 1 | 377 | 10.824002 | 0.3081 | 0 | 1055 | 30.28998 | 0.90140 | 1 | 268 | 2401 | 11.16202 | 0.3549 | 0 | 209 | 763 | 27.391874 | 0.7940 | 1 | 911 | 3077 | 29.606760 | 0.9746 | 1 | 3036 | 3483 | 87.16624 | 0.8550 | 1 | 1241 | 52 | 4.190169 | 0.4505 | 0 | 4 | 0.3223207 | 0.6567 | 0 | 113 | 1027 | 11.002921 | 0.9128 | 1 | 422 | 1027 | 41.09056 | 0.8250 | 1 | 0 | 3483 | 0.000000 | 0.3512 | 0 | 4.3771 | 0.9379 | 4 | 3.33300 | 0.8766 | 3 | 0.8550 | 0.8467 | 1 | 3.1962 | 0.8026 | 2 | 11.76130 | 0.9229 | 10 | 3385 | 1185 | 945 | 1682 | 3364 | 50.00000 | 0.9391 | 1 | 72 | 1577 | 4.565631 | 0.4586 | 0 | 185 | 468 | 39.52991 | 0.8332 | 1 | 362 | 477 | 75.89099 | 0.9703 | 1 | 547 | 945 | 57.88360 | 0.9477 | 1 | 592 | 1983 | 29.85376 | 0.9422 | 1 | 738 | 3385 | 21.802068 | 0.9817 | 1 | 240 | 7.090103 | 0.05988 | 0 | 1129 | 33.35303 | 0.9689 | 1 | 135 | 2256 | 5.984043 | 0.04817 | 0 | 110 | 717 | 15.34170 | 0.5822 | 0 | 721 | 3076 | 23.439532 | 0.9569 | 1 | 3029 | 3385 | 89.48301 | 0.8727 | 1 | 1185 | 9 | 0.7594937 | 0.2382 | 0 | 0 | 0.0000000 | 0.3216 | 0 | 103 | 945 | 10.899471 | 0.9072 | 1 | 263 | 945 | 27.83069 | 0.7560 | 1 | 0 | 3385 | 0.0000000 | 0.1517 | 0 | 4.2693 | 0.9283 | 4 | 2.61605 | 0.5709 | 2 | 0.8727 | 0.8648 | 1 | 2.3747 | 0.4357 | 2 | 10.13275 | 0.7921 | 9 | Yes | 0 | 0 | $0 |
34001001100 | 34 | 001 | 001100 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 2204 | 1204 | 1204 | 1185 | 2204 | 53.76588 | 0.9457 | 1 | 219 | 927 | 23.624596 | 0.9830 | 1 | 97 | 172 | 56.39535 | 0.9094 | 1 | 462 | 1032 | 44.76744 | 0.4746 | 0 | 559 | 1204 | 46.42857 | 0.7197 | 0 | 346 | 1440 | 24.02778 | 0.8306 | 1 | 469 | 1942 | 24.15036 | 0.9360 | 1 | 363 | 16.470054 | 0.7020 | 0 | 578 | 26.22505 | 0.74410 | 0 | 442 | 1558 | 28.36970 | 0.9675 | 1 | 247 | 396 | 62.373737 | 0.9898 | 1 | 104 | 2051 | 5.070697 | 0.7260 | 0 | 2118 | 2204 | 96.09800 | 0.9204 | 1 | 1204 | 570 | 47.342193 | 0.8858 | 1 | 0 | 0.0000000 | 0.3251 | 0 | 14 | 1204 | 1.162791 | 0.4877 | 0 | 817 | 1204 | 67.85714 | 0.9413 | 1 | 0 | 2204 | 0.000000 | 0.3512 | 0 | 4.4150 | 0.9451 | 4 | 4.12940 | 0.9805 | 2 | 0.9204 | 0.9114 | 1 | 2.9911 | 0.7243 | 2 | 12.45590 | 0.9597 | 9 | 1950 | 1267 | 1096 | 1131 | 1950 | 58.00000 | 0.9678 | 1 | 66 | 706 | 9.348442 | 0.8395 | 1 | 42 | 101 | 41.58416 | 0.8612 | 1 | 309 | 995 | 31.05528 | 0.1959 | 0 | 351 | 1096 | 32.02555 | 0.4782 | 0 | 510 | 1379 | 36.98332 | 0.9763 | 1 | 155 | 1950 | 7.948718 | 0.7660 | 1 | 392 | 20.102564 | 0.69880 | 0 | 447 | 22.92308 | 0.6712 | 0 | 570 | 1503 | 37.924152 | 0.99200 | 1 | 143 | 374 | 38.23529 | 0.9167 | 1 | 109 | 1841 | 5.920695 | 0.7464 | 0 | 1909 | 1950 | 97.89744 | 0.9529 | 1 | 1267 | 479 | 37.8058406 | 0.8464 | 1 | 0 | 0.0000000 | 0.3216 | 0 | 33 | 1096 | 3.010949 | 0.6446 | 0 | 743 | 1096 | 67.79197 | 0.9414 | 1 | 0 | 1950 | 0.0000000 | 0.1517 | 0 | 4.0278 | 0.8848 | 4 | 4.02510 | 0.9798 | 2 | 0.9529 | 0.9442 | 1 | 2.9057 | 0.6869 | 2 | 11.91150 | 0.9365 | 9 | Yes | 0 | 0 | $0 |
# Join national data to nmtc_awards_pre2010, set count to 0 if no data
svi_national_nmtc_eligible <-
left_join(svi_national_nmtc_eligible, nmtc_awards_pre2010, join_by("GEOID_2010_trt" == "GEOID10")) %>%
mutate(pre10_nmtc_project_cnt = if_else(is.na(pre10_nmtc_project_cnt), 0, pre10_nmtc_project_cnt)) %>%
mutate(pre10_nmtc_dollars = if_else(is.na(pre10_nmtc_dollars), 0, pre10_nmtc_dollars))%>%
mutate(pre10_nmtc_dollars_formatted = if_else(is.na(pre10_nmtc_dollars_formatted), "$0", pre10_nmtc_dollars_formatted))
# View table
svi_national_nmtc_eligible %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt | FIPS_st | FIPS_county | FIPS_tract | state | state_name | county | region_number | region | division_number | division | E_TOTPOP_10 | E_HU_10 | E_HH_10 | E_POV150_10 | ET_POVSTATUS_10 | EP_POV150_10 | EPL_POV150_10 | F_POV150_10 | E_UNEMP_10 | ET_EMPSTATUS_10 | EP_UNEMP_10 | EPL_UNEMP_10 | F_UNEMP_10 | E_HBURD_OWN_10 | ET_HOUSINGCOST_OWN_10 | EP_HBURD_OWN_10 | EPL_HBURD_OWN_10 | F_HBURD_OWN_10 | E_HBURD_RENT_10 | ET_HOUSINGCOST_RENT_10 | EP_HBURD_RENT_10 | EPL_HBURD_RENT_10 | F_HBURD_RENT_10 | E_HBURD_10 | ET_HOUSINGCOST_10 | EP_HBURD_10 | EPL_HBURD_10 | F_HBURD_10 | E_NOHSDP_10 | ET_EDSTATUS_10 | EP_NOHSDP_10 | EPL_NOHSDP_10 | F_NOHSDP_10 | E_UNINSUR_12 | ET_INSURSTATUS_12 | EP_UNINSUR_12 | EPL_UNINSUR_12 | F_UNINSUR_12 | E_AGE65_10 | EP_AGE65_10 | EPL_AGE65_10 | F_AGE65_10 | E_AGE17_10 | EP_AGE17_10 | EPL_AGE17_10 | F_AGE17_10 | E_DISABL_12 | ET_DISABLSTATUS_12 | EP_DISABL_12 | EPL_DISABL_12 | F_DISABL_12 | E_SNGPNT_10 | ET_FAMILIES_10 | EP_SNGPNT_10 | EPL_SNGPNT_10 | F_SNGPNT_10 | E_LIMENG_10 | ET_POPAGE5UP_10 | EP_LIMENG_10 | EPL_LIMENG_10 | F_LIMENG_10 | E_MINRTY_10 | ET_POPETHRACE_10 | EP_MINRTY_10 | EPL_MINRTY_10 | F_MINRTY_10 | E_STRHU_10 | E_MUNIT_10 | EP_MUNIT_10 | EPL_MUNIT_10 | F_MUNIT_10 | E_MOBILE_10 | EP_MOBILE_10 | EPL_MOBILE_10 | F_MOBILE_10 | E_CROWD_10 | ET_OCCUPANTS_10 | EP_CROWD_10 | EPL_CROWD_10 | F_CROWD_10 | E_NOVEH_10 | ET_KNOWNVEH_10 | EP_NOVEH_10 | EPL_NOVEH_10 | F_NOVEH_10 | E_GROUPQ_10 | ET_HHTYPE_10 | EP_GROUPQ_10 | EPL_GROUPQ_10 | F_GROUPQ_10 | SPL_THEME1_10 | RPL_THEME1_10 | F_THEME1_10 | SPL_THEME2_10 | RPL_THEME2_10 | F_THEME2_10 | SPL_THEME3_10 | RPL_THEME3_10 | F_THEME3_10 | SPL_THEME4_10 | RPL_THEME4_10 | F_THEME4_10 | SPL_THEMES_10 | RPL_THEMES_10 | F_TOTAL_10 | E_TOTPOP_20 | E_HU_20 | E_HH_20 | E_POV150_20 | ET_POVSTATUS_20 | EP_POV150_20 | EPL_POV150_20 | F_POV150_20 | E_UNEMP_20 | ET_EMPSTATUS_20 | EP_UNEMP_20 | EPL_UNEMP_20 | F_UNEMP_20 | E_HBURD_OWN_20 | ET_HOUSINGCOST_OWN_20 | EP_HBURD_OWN_20 | EPL_HBURD_OWN_20 | F_HBURD_OWN_20 | E_HBURD_RENT_20 | ET_HOUSINGCOST_RENT_20 | EP_HBURD_RENT_20 | EPL_HBURD_RENT_20 | F_HBURD_RENT_20 | E_HBURD_20 | ET_HOUSINGCOST_20 | EP_HBURD_20 | EPL_HBURD_20 | F_HBURD_20 | E_NOHSDP_20 | ET_EDSTATUS_20 | EP_NOHSDP_20 | EPL_NOHSDP_20 | F_NOHSDP_20 | E_UNINSUR_20 | ET_INSURSTATUS_20 | EP_UNINSUR_20 | EPL_UNINSUR_20 | F_UNINSUR_20 | E_AGE65_20 | EP_AGE65_20 | EPL_AGE65_20 | F_AGE65_20 | E_AGE17_20 | EP_AGE17_20 | EPL_AGE17_20 | F_AGE17_20 | E_DISABL_20 | ET_DISABLSTATUS_20 | EP_DISABL_20 | EPL_DISABL_20 | F_DISABL_20 | E_SNGPNT_20 | ET_FAMILIES_20 | EP_SNGPNT_20 | EPL_SNGPNT_20 | F_SNGPNT_20 | E_LIMENG_20 | ET_POPAGE5UP_20 | EP_LIMENG_20 | EPL_LIMENG_20 | F_LIMENG_20 | E_MINRTY_20 | ET_POPETHRACE_20 | EP_MINRTY_20 | EPL_MINRTY_20 | F_MINRTY_20 | E_STRHU_20 | E_MUNIT_20 | EP_MUNIT_20 | EPL_MUNIT_20 | F_MUNIT_20 | E_MOBILE_20 | EP_MOBILE_20 | EPL_MOBILE_20 | F_MOBILE_20 | E_CROWD_20 | ET_OCCUPANTS_20 | EP_CROWD_20 | EPL_CROWD_20 | F_CROWD_20 | E_NOVEH_20 | ET_KNOWNVEH_20 | EP_NOVEH_20 | EPL_NOVEH_20 | F_NOVEH_20 | E_GROUPQ_20 | ET_HHTYPE_20 | EP_GROUPQ_20 | EPL_GROUPQ_20 | F_GROUPQ_20 | SPL_THEME1_20 | RPL_THEME1_20 | F_THEME1_20 | SPL_THEME2_20 | RPL_THEME2_20 | F_THEME2_20 | SPL_THEME3_20 | RPL_THEME3_20 | F_THEME3_20 | SPL_THEME4_20 | RPL_THEME4_20 | F_THEME4_20 | SPL_THEMES_20 | RPL_THEMES_20 | F_TOTAL_20 | nmtc_eligibility | pre10_nmtc_project_cnt | pre10_nmtc_dollars | pre10_nmtc_dollars_formatted |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
01001020200 | 01 | 001 | 020200 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 2020 | 816 | 730 | 495 | 1992 | 24.84940 | 0.5954 | 0 | 68 | 834 | 8.153477 | 0.57540 | 0 | 49 | 439 | 11.16173 | 0.02067 | 0 | 105 | 291 | 36.08247 | 0.30190 | 0 | 154 | 730 | 21.09589 | 0.09312 | 0 | 339 | 1265 | 26.79842 | 0.8392 | 1 | 313 | 2012 | 15.55666 | 0.6000 | 0 | 204 | 10.09901 | 0.3419 | 0 | 597 | 29.55446 | 0.8192 | 1 | 359 | 1515 | 23.69637 | 0.8791 | 1 | 132 | 456 | 28.947368 | 0.8351 | 1 | 15 | 1890 | 0.7936508 | 0.40130 | 0 | 1243 | 2020 | 61.53465 | 0.7781 | 1 | 816 | 0 | 0.0000000 | 0.1224 | 0 | 34 | 4.1666667 | 0.6664 | 0 | 13 | 730 | 1.780822 | 0.5406 | 0 | 115 | 730 | 15.753425 | 0.8382 | 1 | 0 | 2020 | 0.0000 | 0.3640 | 0 | 2.70312 | 0.5665 | 1 | 3.27660 | 0.8614 | 3 | 0.7781 | 0.7709 | 1 | 2.5316 | 0.5047 | 1 | 9.28942 | 0.6832 | 6 | 1757 | 720 | 573 | 384 | 1511 | 25.41363 | 0.6427 | 0 | 29 | 717 | 4.044630 | 0.4132 | 0 | 33 | 392 | 8.418367 | 0.03542 | 0 | 116 | 181 | 64.08840 | 0.9086 | 1 | 149 | 573 | 26.00349 | 0.40410 | 0 | 139 | 1313 | 10.58644 | 0.5601 | 0 | 91 | 1533 | 5.936073 | 0.4343 | 0 | 284 | 16.163916 | 0.5169 | 0 | 325 | 18.49744 | 0.2851 | 0 | 164 | 1208.000 | 13.57616 | 0.4127 | 0 | 42 | 359.0000 | 11.699164 | 0.3998 | 0 | 0 | 1651 | 0.0000000 | 0.09479 | 0 | 1116 | 1757.000 | 63.51736 | 0.7591 | 1 | 720 | 3 | 0.4166667 | 0.2470 | 0 | 5 | 0.6944444 | 0.5106 | 0 | 9 | 573 | 1.5706806 | 0.4688 | 0 | 57 | 573.000 | 9.947644 | 0.7317 | 0 | 212 | 1757 | 12.0660216 | 0.9549 | 1 | 2.45440 | 0.4888 | 0 | 1.70929 | 0.1025 | 0 | 0.7591 | 0.7527 | 1 | 2.9130 | 0.6862 | 1 | 7.83579 | 0.4802 | 2 | Yes | 0 | 0 | $0 |
01001020700 | 01 | 001 | 020700 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 2664 | 1254 | 1139 | 710 | 2664 | 26.65165 | 0.6328 | 0 | 29 | 1310 | 2.213741 | 0.05255 | 0 | 134 | 710 | 18.87324 | 0.13890 | 0 | 187 | 429 | 43.58974 | 0.47090 | 0 | 321 | 1139 | 28.18262 | 0.28130 | 0 | 396 | 1852 | 21.38229 | 0.7478 | 0 | 345 | 2878 | 11.98749 | 0.4459 | 0 | 389 | 14.60210 | 0.6417 | 0 | 599 | 22.48499 | 0.4007 | 0 | 510 | 2168 | 23.52399 | 0.8752 | 1 | 228 | 712 | 32.022472 | 0.8712 | 1 | 0 | 2480 | 0.0000000 | 0.09298 | 0 | 694 | 2664 | 26.05105 | 0.5138 | 0 | 1254 | 8 | 0.6379585 | 0.2931 | 0 | 460 | 36.6826156 | 0.9714 | 1 | 0 | 1139 | 0.000000 | 0.1238 | 0 | 125 | 1139 | 10.974539 | 0.7477 | 0 | 0 | 2664 | 0.0000 | 0.3640 | 0 | 2.16035 | 0.4069 | 0 | 2.88178 | 0.6997 | 2 | 0.5138 | 0.5090 | 0 | 2.5000 | 0.4882 | 1 | 8.05593 | 0.5185 | 3 | 3562 | 1313 | 1248 | 1370 | 3528 | 38.83220 | 0.8512 | 1 | 128 | 1562 | 8.194622 | 0.7935 | 1 | 168 | 844 | 19.905213 | 0.44510 | 0 | 237 | 404 | 58.66337 | 0.8359 | 1 | 405 | 1248 | 32.45192 | 0.60420 | 0 | 396 | 2211 | 17.91045 | 0.7857 | 1 | 444 | 3547 | 12.517620 | 0.7758 | 1 | 355 | 9.966311 | 0.1800 | 0 | 954 | 26.78271 | 0.7923 | 1 | 629 | 2593.000 | 24.25762 | 0.8730 | 1 | 171 | 797.0000 | 21.455458 | 0.7186 | 0 | 0 | 3211 | 0.0000000 | 0.09479 | 0 | 1009 | 3562.000 | 28.32678 | 0.4668 | 0 | 1313 | 14 | 1.0662605 | 0.3165 | 0 | 443 | 33.7395278 | 0.9663 | 1 | 73 | 1248 | 5.8493590 | 0.8211 | 1 | 17 | 1248.000 | 1.362180 | 0.1554 | 0 | 112 | 3562 | 3.1443010 | 0.8514 | 1 | 3.81040 | 0.8569 | 4 | 2.65869 | 0.5847 | 2 | 0.4668 | 0.4629 | 0 | 3.1107 | 0.7714 | 3 | 10.04659 | 0.7851 | 9 | Yes | 0 | 0 | $0 |
01001021100 | 01 | 001 | 021100 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 3298 | 1502 | 1323 | 860 | 3298 | 26.07641 | 0.6211 | 0 | 297 | 1605 | 18.504673 | 0.94340 | 1 | 250 | 1016 | 24.60630 | 0.32070 | 0 | 74 | 307 | 24.10423 | 0.11920 | 0 | 324 | 1323 | 24.48980 | 0.17380 | 0 | 710 | 2231 | 31.82429 | 0.8976 | 1 | 654 | 3565 | 18.34502 | 0.7018 | 0 | 411 | 12.46210 | 0.5001 | 0 | 738 | 22.37720 | 0.3934 | 0 | 936 | 2861 | 32.71583 | 0.9807 | 1 | 138 | 825 | 16.727273 | 0.5715 | 0 | 9 | 3155 | 0.2852615 | 0.25010 | 0 | 1979 | 3298 | 60.00606 | 0.7703 | 1 | 1502 | 14 | 0.9320905 | 0.3234 | 0 | 659 | 43.8748336 | 0.9849 | 1 | 44 | 1323 | 3.325775 | 0.7062 | 0 | 137 | 1323 | 10.355253 | 0.7313 | 0 | 0 | 3298 | 0.0000 | 0.3640 | 0 | 3.33770 | 0.7351 | 2 | 2.69580 | 0.6028 | 1 | 0.7703 | 0.7631 | 1 | 3.1098 | 0.7827 | 1 | 9.91360 | 0.7557 | 5 | 3499 | 1825 | 1462 | 1760 | 3499 | 50.30009 | 0.9396 | 1 | 42 | 966 | 4.347826 | 0.4539 | 0 | 426 | 1274 | 33.437991 | 0.85200 | 1 | 52 | 188 | 27.65957 | 0.1824 | 0 | 478 | 1462 | 32.69494 | 0.61110 | 0 | 422 | 2488 | 16.96141 | 0.7638 | 1 | 497 | 3499 | 14.204058 | 0.8246 | 1 | 853 | 24.378394 | 0.8688 | 1 | 808 | 23.09231 | 0.5829 | 0 | 908 | 2691.100 | 33.74084 | 0.9808 | 1 | 179 | 811.6985 | 22.052524 | 0.7323 | 0 | 8 | 3248 | 0.2463054 | 0.26220 | 0 | 1986 | 3498.713 | 56.76373 | 0.7175 | 0 | 1825 | 29 | 1.5890411 | 0.3551 | 0 | 576 | 31.5616438 | 0.9594 | 1 | 88 | 1462 | 6.0191518 | 0.8269 | 1 | 148 | 1461.993 | 10.123166 | 0.7364 | 0 | 38 | 3499 | 1.0860246 | 0.7013 | 0 | 3.59300 | 0.8073 | 3 | 3.42700 | 0.9156 | 2 | 0.7175 | 0.7114 | 0 | 3.5791 | 0.9216 | 2 | 11.31660 | 0.9150 | 7 | Yes | 0 | 0 | $0 |
01003010200 | 01 | 003 | 010200 | AL | Alabama | Baldwin County | 3 | South Region | 6 | East South Central Division | 2612 | 1220 | 1074 | 338 | 2605 | 12.97505 | 0.2907 | 0 | 44 | 1193 | 3.688181 | 0.14720 | 0 | 172 | 928 | 18.53448 | 0.13090 | 0 | 31 | 146 | 21.23288 | 0.09299 | 0 | 203 | 1074 | 18.90130 | 0.05657 | 0 | 455 | 1872 | 24.30556 | 0.8016 | 1 | 456 | 2730 | 16.70330 | 0.6445 | 0 | 401 | 15.35222 | 0.6847 | 0 | 563 | 21.55436 | 0.3406 | 0 | 410 | 2038 | 20.11776 | 0.7755 | 1 | 64 | 779 | 8.215661 | 0.2181 | 0 | 0 | 2510 | 0.0000000 | 0.09298 | 0 | 329 | 2612 | 12.59571 | 0.3113 | 0 | 1220 | 38 | 3.1147541 | 0.4648 | 0 | 385 | 31.5573770 | 0.9545 | 1 | 20 | 1074 | 1.862197 | 0.5509 | 0 | 43 | 1074 | 4.003724 | 0.4088 | 0 | 0 | 2612 | 0.0000 | 0.3640 | 0 | 1.94057 | 0.3398 | 1 | 2.11188 | 0.2802 | 1 | 0.3113 | 0.3084 | 0 | 2.7430 | 0.6129 | 1 | 7.10675 | 0.3771 | 3 | 2928 | 1312 | 1176 | 884 | 2928 | 30.19126 | 0.7334 | 0 | 29 | 1459 | 1.987663 | 0.1356 | 0 | 71 | 830 | 8.554217 | 0.03726 | 0 | 134 | 346 | 38.72832 | 0.3964 | 0 | 205 | 1176 | 17.43197 | 0.12010 | 0 | 294 | 2052 | 14.32749 | 0.6940 | 0 | 219 | 2925 | 7.487179 | 0.5423 | 0 | 556 | 18.989071 | 0.6705 | 0 | 699 | 23.87295 | 0.6339 | 0 | 489 | 2226.455 | 21.96317 | 0.8122 | 1 | 191 | 783.8820 | 24.365914 | 0.7799 | 1 | 0 | 2710 | 0.0000000 | 0.09479 | 0 | 398 | 2927.519 | 13.59513 | 0.2511 | 0 | 1312 | 13 | 0.9908537 | 0.3111 | 0 | 400 | 30.4878049 | 0.9557 | 1 | 6 | 1176 | 0.5102041 | 0.2590 | 0 | 81 | 1176.202 | 6.886570 | 0.6115 | 0 | 7 | 2928 | 0.2390710 | 0.4961 | 0 | 2.22540 | 0.4183 | 0 | 2.99129 | 0.7634 | 2 | 0.2511 | 0.2490 | 0 | 2.6334 | 0.5496 | 1 | 8.10119 | 0.5207 | 3 | Yes | 0 | 0 | $0 |
01003010500 | 01 | 003 | 010500 | AL | Alabama | Baldwin County | 3 | South Region | 6 | East South Central Division | 4230 | 1779 | 1425 | 498 | 3443 | 14.46413 | 0.3337 | 0 | 166 | 1625 | 10.215385 | 0.71790 | 0 | 151 | 1069 | 14.12535 | 0.04638 | 0 | 196 | 356 | 55.05618 | 0.73830 | 0 | 347 | 1425 | 24.35088 | 0.17010 | 0 | 707 | 2945 | 24.00679 | 0.7967 | 1 | 528 | 4001 | 13.19670 | 0.5005 | 0 | 619 | 14.63357 | 0.6436 | 0 | 790 | 18.67612 | 0.1937 | 0 | 536 | 3096 | 17.31266 | 0.6572 | 0 | 165 | 920 | 17.934783 | 0.6102 | 0 | 20 | 4021 | 0.4973887 | 0.32320 | 0 | 754 | 4230 | 17.82506 | 0.4023 | 0 | 1779 | 97 | 5.4525014 | 0.5525 | 0 | 8 | 0.4496908 | 0.4600 | 0 | 63 | 1425 | 4.421053 | 0.7762 | 1 | 90 | 1425 | 6.315790 | 0.5691 | 0 | 787 | 4230 | 18.6052 | 0.9649 | 1 | 2.51890 | 0.5121 | 1 | 2.42790 | 0.4539 | 0 | 0.4023 | 0.3986 | 0 | 3.3227 | 0.8628 | 2 | 8.67180 | 0.6054 | 3 | 5877 | 1975 | 1836 | 820 | 5244 | 15.63692 | 0.3902 | 0 | 90 | 2583 | 3.484321 | 0.3361 | 0 | 159 | 1345 | 11.821561 | 0.10530 | 0 | 139 | 491 | 28.30957 | 0.1924 | 0 | 298 | 1836 | 16.23094 | 0.09053 | 0 | 570 | 4248 | 13.41808 | 0.6669 | 0 | 353 | 5247 | 6.727654 | 0.4924 | 0 | 1109 | 18.870172 | 0.6645 | 0 | 1144 | 19.46571 | 0.3411 | 0 | 717 | 4102.545 | 17.47696 | 0.6332 | 0 | 103 | 1286.1180 | 8.008596 | 0.2341 | 0 | 0 | 5639 | 0.0000000 | 0.09479 | 0 | 868 | 5877.481 | 14.76823 | 0.2709 | 0 | 1975 | 26 | 1.3164557 | 0.3359 | 0 | 45 | 2.2784810 | 0.6271 | 0 | 9 | 1836 | 0.4901961 | 0.2540 | 0 | 116 | 1835.798 | 6.318779 | 0.5811 | 0 | 633 | 5877 | 10.7708014 | 0.9507 | 1 | 1.97613 | 0.3410 | 0 | 1.96769 | 0.1961 | 0 | 0.2709 | 0.2686 | 0 | 2.7488 | 0.6077 | 1 | 6.96352 | 0.3406 | 1 | Yes | 0 | 0 | $0 |
01003010600 | 01 | 003 | 010600 | AL | Alabama | Baldwin County | 3 | South Region | 6 | East South Central Division | 3724 | 1440 | 1147 | 1973 | 3724 | 52.98067 | 0.9342 | 1 | 142 | 1439 | 9.867964 | 0.69680 | 0 | 235 | 688 | 34.15698 | 0.62950 | 0 | 187 | 459 | 40.74074 | 0.40290 | 0 | 422 | 1147 | 36.79163 | 0.55150 | 0 | 497 | 1876 | 26.49254 | 0.8354 | 1 | 511 | 3661 | 13.95794 | 0.5334 | 0 | 246 | 6.60580 | 0.1481 | 0 | 1256 | 33.72718 | 0.9305 | 1 | 496 | 2522 | 19.66693 | 0.7587 | 1 | 274 | 838 | 32.696897 | 0.8779 | 1 | 32 | 3479 | 0.9198045 | 0.42810 | 0 | 2606 | 3724 | 69.97852 | 0.8184 | 1 | 1440 | 21 | 1.4583333 | 0.3683 | 0 | 321 | 22.2916667 | 0.9036 | 1 | 97 | 1147 | 8.456844 | 0.8956 | 1 | 167 | 1147 | 14.559721 | 0.8209 | 1 | 0 | 3724 | 0.0000 | 0.3640 | 0 | 3.55130 | 0.7859 | 2 | 3.14330 | 0.8145 | 3 | 0.8184 | 0.8108 | 1 | 3.3524 | 0.8725 | 3 | 10.86540 | 0.8550 | 9 | 4115 | 1534 | 1268 | 1676 | 3997 | 41.93145 | 0.8814 | 1 | 294 | 1809 | 16.252073 | 0.9674 | 1 | 341 | 814 | 41.891892 | 0.94320 | 1 | 204 | 454 | 44.93392 | 0.5438 | 0 | 545 | 1268 | 42.98107 | 0.83620 | 1 | 624 | 2425 | 25.73196 | 0.9002 | 1 | 994 | 4115 | 24.155529 | 0.9602 | 1 | 642 | 15.601458 | 0.4841 | 0 | 1126 | 27.36331 | 0.8175 | 1 | 568 | 2989.000 | 19.00301 | 0.7045 | 0 | 212 | 715.0000 | 29.650350 | 0.8592 | 1 | 56 | 3825 | 1.4640523 | 0.53120 | 0 | 2715 | 4115.000 | 65.97813 | 0.7732 | 1 | 1534 | 0 | 0.0000000 | 0.1079 | 0 | 529 | 34.4850065 | 0.9685 | 1 | 101 | 1268 | 7.9652997 | 0.8795 | 1 | 89 | 1268.000 | 7.018927 | 0.6184 | 0 | 17 | 4115 | 0.4131227 | 0.5707 | 0 | 4.54540 | 0.9754 | 5 | 3.39650 | 0.9081 | 2 | 0.7732 | 0.7667 | 1 | 3.1450 | 0.7858 | 2 | 11.86010 | 0.9520 | 10 | Yes | 0 | 0 | $0 |
Check row count:
Finally, we need to filter our data set to exclude tracts without SVI flag data for 2010 and/or 2020 (population may be too small), we also need to exclude tracts that had an NMTC project before 2010 since we want to measure the impact of the introduction of NMTC projects. We will discuss this more in-depth in Lab 05, but broadly we want to ensure that previous projects will not interfere with our interpretation of our study results. If tracts meet all criteria, we will flag it as 1 for tracts with NMTC projects and 0 for tracts without an NMTC project:
# Find count of NMTC projects after 2010
# Remove all tracts that do not have SVI flag counts for 2010
# Remove all tracts that do not have SVI flag counts for 2020
# Remove all tracts that had an NMTC project before 2010
svi_divisional_nmtc <-
left_join(svi_divisional_nmtc_eligible, nmtc_awards_post2010, join_by("GEOID_2010_trt" == "GEOID10")) %>%
mutate(post10_nmtc_project_cnt = if_else(is.na(post10_nmtc_project_cnt), 0, post10_nmtc_project_cnt)) %>%
mutate(post10_nmtc_dollars = if_else(is.na(post10_nmtc_dollars), 0, post10_nmtc_dollars))%>%
mutate(post10_nmtc_dollars_formatted = if_else(is.na(post10_nmtc_dollars_formatted), "$0", post10_nmtc_dollars_formatted)) %>%
mutate(nmtc_flag = if_else(post10_nmtc_project_cnt > 0, 1, 0)) %>%
filter(!is.na(F_TOTAL_10)) %>%
filter(!is.na(F_TOTAL_20)) %>%
filter(pre10_nmtc_project_cnt < 1)
svi_divisional_nmtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt | FIPS_st | FIPS_county | FIPS_tract | state | state_name | county | region_number | region | division_number | division | E_TOTPOP_10 | E_HU_10 | E_HH_10 | E_POV150_10 | ET_POVSTATUS_10 | EP_POV150_10 | EPL_POV150_10 | F_POV150_10 | E_UNEMP_10 | ET_EMPSTATUS_10 | EP_UNEMP_10 | EPL_UNEMP_10 | F_UNEMP_10 | E_HBURD_OWN_10 | ET_HOUSINGCOST_OWN_10 | EP_HBURD_OWN_10 | EPL_HBURD_OWN_10 | F_HBURD_OWN_10 | E_HBURD_RENT_10 | ET_HOUSINGCOST_RENT_10 | EP_HBURD_RENT_10 | EPL_HBURD_RENT_10 | F_HBURD_RENT_10 | E_HBURD_10 | ET_HOUSINGCOST_10 | EP_HBURD_10 | EPL_HBURD_10 | F_HBURD_10 | E_NOHSDP_10 | ET_EDSTATUS_10 | EP_NOHSDP_10 | EPL_NOHSDP_10 | F_NOHSDP_10 | E_UNINSUR_12 | ET_INSURSTATUS_12 | EP_UNINSUR_12 | EPL_UNINSUR_12 | F_UNINSUR_12 | E_AGE65_10 | EP_AGE65_10 | EPL_AGE65_10 | F_AGE65_10 | E_AGE17_10 | EP_AGE17_10 | EPL_AGE17_10 | F_AGE17_10 | E_DISABL_12 | ET_DISABLSTATUS_12 | EP_DISABL_12 | EPL_DISABL_12 | F_DISABL_12 | E_SNGPNT_10 | ET_FAMILIES_10 | EP_SNGPNT_10 | EPL_SNGPNT_10 | F_SNGPNT_10 | E_LIMENG_10 | ET_POPAGE5UP_10 | EP_LIMENG_10 | EPL_LIMENG_10 | F_LIMENG_10 | E_MINRTY_10 | ET_POPETHRACE_10 | EP_MINRTY_10 | EPL_MINRTY_10 | F_MINRTY_10 | E_STRHU_10 | E_MUNIT_10 | EP_MUNIT_10 | EPL_MUNIT_10 | F_MUNIT_10 | E_MOBILE_10 | EP_MOBILE_10 | EPL_MOBILE_10 | F_MOBILE_10 | E_CROWD_10 | ET_OCCUPANTS_10 | EP_CROWD_10 | EPL_CROWD_10 | F_CROWD_10 | E_NOVEH_10 | ET_KNOWNVEH_10 | EP_NOVEH_10 | EPL_NOVEH_10 | F_NOVEH_10 | E_GROUPQ_10 | ET_HHTYPE_10 | EP_GROUPQ_10 | EPL_GROUPQ_10 | F_GROUPQ_10 | SPL_THEME1_10 | RPL_THEME1_10 | F_THEME1_10 | SPL_THEME2_10 | RPL_THEME2_10 | F_THEME2_10 | SPL_THEME3_10 | RPL_THEME3_10 | F_THEME3_10 | SPL_THEME4_10 | RPL_THEME4_10 | F_THEME4_10 | SPL_THEMES_10 | RPL_THEMES_10 | F_TOTAL_10 | E_TOTPOP_20 | E_HU_20 | E_HH_20 | E_POV150_20 | ET_POVSTATUS_20 | EP_POV150_20 | EPL_POV150_20 | F_POV150_20 | E_UNEMP_20 | ET_EMPSTATUS_20 | EP_UNEMP_20 | EPL_UNEMP_20 | F_UNEMP_20 | E_HBURD_OWN_20 | ET_HOUSINGCOST_OWN_20 | EP_HBURD_OWN_20 | EPL_HBURD_OWN_20 | F_HBURD_OWN_20 | E_HBURD_RENT_20 | ET_HOUSINGCOST_RENT_20 | EP_HBURD_RENT_20 | EPL_HBURD_RENT_20 | F_HBURD_RENT_20 | E_HBURD_20 | ET_HOUSINGCOST_20 | EP_HBURD_20 | EPL_HBURD_20 | F_HBURD_20 | E_NOHSDP_20 | ET_EDSTATUS_20 | EP_NOHSDP_20 | EPL_NOHSDP_20 | F_NOHSDP_20 | E_UNINSUR_20 | ET_INSURSTATUS_20 | EP_UNINSUR_20 | EPL_UNINSUR_20 | F_UNINSUR_20 | E_AGE65_20 | EP_AGE65_20 | EPL_AGE65_20 | F_AGE65_20 | E_AGE17_20 | EP_AGE17_20 | EPL_AGE17_20 | F_AGE17_20 | E_DISABL_20 | ET_DISABLSTATUS_20 | EP_DISABL_20 | EPL_DISABL_20 | F_DISABL_20 | E_SNGPNT_20 | ET_FAMILIES_20 | EP_SNGPNT_20 | EPL_SNGPNT_20 | F_SNGPNT_20 | E_LIMENG_20 | ET_POPAGE5UP_20 | EP_LIMENG_20 | EPL_LIMENG_20 | F_LIMENG_20 | E_MINRTY_20 | ET_POPETHRACE_20 | EP_MINRTY_20 | EPL_MINRTY_20 | F_MINRTY_20 | E_STRHU_20 | E_MUNIT_20 | EP_MUNIT_20 | EPL_MUNIT_20 | F_MUNIT_20 | E_MOBILE_20 | EP_MOBILE_20 | EPL_MOBILE_20 | F_MOBILE_20 | E_CROWD_20 | ET_OCCUPANTS_20 | EP_CROWD_20 | EPL_CROWD_20 | F_CROWD_20 | E_NOVEH_20 | ET_KNOWNVEH_20 | EP_NOVEH_20 | EPL_NOVEH_20 | F_NOVEH_20 | E_GROUPQ_20 | ET_HHTYPE_20 | EP_GROUPQ_20 | EPL_GROUPQ_20 | F_GROUPQ_20 | SPL_THEME1_20 | RPL_THEME1_20 | F_THEME1_20 | SPL_THEME2_20 | RPL_THEME2_20 | F_THEME2_20 | SPL_THEME3_20 | RPL_THEME3_20 | F_THEME3_20 | SPL_THEME4_20 | RPL_THEME4_20 | F_THEME4_20 | SPL_THEMES_20 | RPL_THEMES_20 | F_TOTAL_20 | nmtc_eligibility | pre10_nmtc_project_cnt | pre10_nmtc_dollars | pre10_nmtc_dollars_formatted | post10_nmtc_project_cnt | post10_nmtc_dollars | post10_nmtc_dollars_formatted | nmtc_flag |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
34001000100 | 34 | 001 | 000100 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 2907 | 1088 | 983 | 1127 | 2907 | 38.76849 | 0.8482 | 1 | 144 | 1433 | 10.048849 | 0.7544 | 1 | 280 | 435 | 64.36782 | 0.9529 | 1 | 204 | 548 | 37.22628 | 0.2998 | 0 | 484 | 983 | 49.23703 | 0.7813 | 1 | 468 | 1759 | 26.60603 | 0.8634 | 1 | 532 | 2543 | 20.92017 | 0.8978 | 1 | 250 | 8.599931 | 0.1777 | 0 | 944 | 32.47334 | 0.94170 | 1 | 186 | 1851 | 10.04862 | 0.2706 | 0 | 266 | 678 | 39.233038 | 0.8981 | 1 | 177 | 2611 | 6.779012 | 0.7778 | 1 | 1928 | 2907 | 66.32267 | 0.7743 | 1 | 1088 | 113 | 10.386029 | 0.6229 | 0 | 9 | 0.8272059 | 0.7223 | 0 | 80 | 983 | 8.138352 | 0.8657 | 1 | 265 | 983 | 26.95829 | 0.7354 | 0 | 0 | 2907 | 0 | 0.3512 | 0 | 4.1451 | 0.8935 | 5 | 3.06590 | 0.7944 | 3 | 0.7743 | 0.7667 | 1 | 3.2975 | 0.8414 | 1 | 11.28280 | 0.8862 | 10 | 2157 | 941 | 784 | 1182 | 2157 | 54.79833 | 0.9571 | 1 | 242 | 1058 | 22.873346 | 0.9922 | 1 | 215 | 342 | 62.86550 | 0.9780 | 1 | 316 | 442 | 71.49321 | 0.9481 | 1 | 531 | 784 | 67.72959 | 0.9893 | 1 | 396 | 1274 | 31.08320 | 0.9497 | 1 | 266 | 2157 | 12.331943 | 0.9041 | 1 | 185 | 8.576727 | 0.09430 | 0 | 552 | 25.59110 | 0.8128 | 1 | 297 | 1605 | 18.504673 | 0.74880 | 0 | 83 | 510 | 16.27451 | 0.6090 | 0 | 251 | 2020 | 12.425743 | 0.87100 | 1 | 1852 | 2157 | 85.85999 | 0.8476 | 1 | 941 | 118 | 12.5398512 | 0.6385 | 0 | 0 | 0.00000 | 0.3216 | 0 | 67 | 784 | 8.545918 | 0.8657 | 1 | 212 | 784 | 27.04082 | 0.7502 | 1 | 0 | 2157 | 0.0000000 | 0.1517 | 0 | 4.7924 | 0.9850 | 5 | 3.13590 | 0.8217 | 2 | 0.8476 | 0.8400 | 1 | 2.7277 | 0.6085 | 2 | 11.50360 | 0.9104 | 10 | Yes | 0 | 0 | $0 | 0 | 0 | $0 | 0 |
34001000200 | 34 | 001 | 000200 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 3189 | 2217 | 1473 | 519 | 3189 | 16.27469 | 0.4806 | 0 | 109 | 1558 | 6.996149 | 0.5179 | 0 | 573 | 955 | 60.00000 | 0.9323 | 1 | 199 | 518 | 38.41699 | 0.3261 | 0 | 772 | 1473 | 52.41005 | 0.8418 | 1 | 405 | 2579 | 15.70376 | 0.6491 | 0 | 484 | 3547 | 13.64533 | 0.7154 | 0 | 847 | 26.560050 | 0.9629 | 1 | 436 | 13.67200 | 0.08181 | 0 | 608 | 3005 | 20.23295 | 0.8466 | 1 | 42 | 857 | 4.900817 | 0.1204 | 0 | 422 | 3072 | 13.736979 | 0.8799 | 1 | 1792 | 3189 | 56.19316 | 0.7390 | 0 | 2217 | 901 | 40.640505 | 0.8693 | 1 | 0 | 0.0000000 | 0.3251 | 0 | 48 | 1473 | 3.258656 | 0.7064 | 0 | 250 | 1473 | 16.97217 | 0.6444 | 0 | 0 | 3189 | 0 | 0.3512 | 0 | 3.2048 | 0.6963 | 1 | 2.89161 | 0.7231 | 3 | 0.7390 | 0.7317 | 0 | 2.8964 | 0.6887 | 1 | 9.73181 | 0.7340 | 5 | 3510 | 2046 | 1353 | 1021 | 3510 | 29.08832 | 0.7682 | 1 | 121 | 1852 | 6.533477 | 0.6717 | 0 | 343 | 696 | 49.28161 | 0.9273 | 1 | 416 | 657 | 63.31811 | 0.8696 | 1 | 759 | 1353 | 56.09756 | 0.9321 | 1 | 553 | 2338 | 23.65269 | 0.8871 | 1 | 354 | 3510 | 10.085470 | 0.8530 | 1 | 643 | 18.319088 | 0.60310 | 0 | 1002 | 28.54701 | 0.9055 | 1 | 450 | 2508 | 17.942584 | 0.72330 | 0 | 237 | 786 | 30.15267 | 0.8539 | 1 | 534 | 3375 | 15.822222 | 0.90620 | 1 | 2534 | 3510 | 72.19373 | 0.7818 | 1 | 2046 | 906 | 44.2815249 | 0.8690 | 1 | 0 | 0.00000 | 0.3216 | 0 | 119 | 1353 | 8.795270 | 0.8711 | 1 | 324 | 1353 | 23.94678 | 0.7255 | 0 | 0 | 3510 | 0.0000000 | 0.1517 | 0 | 4.1121 | 0.9003 | 4 | 3.99200 | 0.9781 | 3 | 0.7818 | 0.7747 | 1 | 2.9389 | 0.7011 | 2 | 11.82480 | 0.9310 | 10 | Yes | 0 | 0 | $0 | 0 | 0 | $0 | 0 |
34001000300 | 34 | 001 | 000300 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 3997 | 1823 | 1357 | 1401 | 3968 | 35.30746 | 0.8164 | 1 | 382 | 2238 | 17.068811 | 0.9376 | 1 | 176 | 329 | 53.49544 | 0.8855 | 1 | 604 | 1028 | 58.75486 | 0.7947 | 1 | 780 | 1357 | 57.47973 | 0.9165 | 1 | 920 | 2677 | 34.36683 | 0.9346 | 1 | 1351 | 4149 | 32.56206 | 0.9811 | 1 | 314 | 7.855892 | 0.1437 | 0 | 937 | 23.44258 | 0.55900 | 0 | 319 | 3054 | 10.44532 | 0.3000 | 0 | 187 | 782 | 23.913044 | 0.7498 | 0 | 1080 | 3671 | 29.419777 | 0.9742 | 1 | 3357 | 3997 | 83.98799 | 0.8419 | 1 | 1823 | 363 | 19.912233 | 0.7535 | 1 | 0 | 0.0000000 | 0.3251 | 0 | 150 | 1357 | 11.053795 | 0.9136 | 1 | 651 | 1357 | 47.97347 | 0.8585 | 1 | 0 | 3997 | 0 | 0.3512 | 0 | 4.5862 | 0.9691 | 5 | 2.72670 | 0.6360 | 1 | 0.8419 | 0.8336 | 1 | 3.2019 | 0.8054 | 3 | 11.35670 | 0.8920 | 10 | 3801 | 1640 | 1226 | 1857 | 3801 | 48.85556 | 0.9333 | 1 | 226 | 1800 | 12.555556 | 0.9267 | 1 | 111 | 280 | 39.64286 | 0.8339 | 1 | 608 | 946 | 64.27061 | 0.8842 | 1 | 719 | 1226 | 58.64600 | 0.9528 | 1 | 650 | 2275 | 28.57143 | 0.9337 | 1 | 1027 | 3801 | 27.019206 | 0.9914 | 1 | 380 | 9.997369 | 0.14040 | 0 | 1223 | 32.17574 | 0.9607 | 1 | 219 | 2578 | 8.494957 | 0.15680 | 0 | 268 | 909 | 29.48295 | 0.8456 | 1 | 940 | 3400 | 27.647059 | 0.97280 | 1 | 3318 | 3801 | 87.29282 | 0.8579 | 1 | 1640 | 262 | 15.9756098 | 0.6917 | 0 | 0 | 0.00000 | 0.3216 | 0 | 124 | 1226 | 10.114192 | 0.8955 | 1 | 477 | 1226 | 38.90701 | 0.8258 | 1 | 0 | 3801 | 0.0000000 | 0.1517 | 0 | 4.7379 | 0.9829 | 5 | 3.07630 | 0.8013 | 3 | 0.8579 | 0.8501 | 1 | 2.8863 | 0.6781 | 2 | 11.55840 | 0.9150 | 11 | Yes | 0 | 0 | $0 | 0 | 0 | $0 | 0 |
34001000500 | 34 | 001 | 000500 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 3483 | 1241 | 1027 | 1938 | 3483 | 55.64169 | 0.9533 | 1 | 124 | 1630 | 7.607362 | 0.5830 | 0 | 227 | 446 | 50.89686 | 0.8549 | 1 | 478 | 581 | 82.27194 | 0.9799 | 1 | 705 | 1027 | 68.64654 | 0.9863 | 1 | 733 | 2077 | 35.29129 | 0.9396 | 1 | 727 | 3258 | 22.31430 | 0.9149 | 1 | 377 | 10.824002 | 0.3081 | 0 | 1055 | 30.28998 | 0.90140 | 1 | 268 | 2401 | 11.16202 | 0.3549 | 0 | 209 | 763 | 27.391874 | 0.7940 | 1 | 911 | 3077 | 29.606760 | 0.9746 | 1 | 3036 | 3483 | 87.16624 | 0.8550 | 1 | 1241 | 52 | 4.190169 | 0.4505 | 0 | 4 | 0.3223207 | 0.6567 | 0 | 113 | 1027 | 11.002921 | 0.9128 | 1 | 422 | 1027 | 41.09056 | 0.8250 | 1 | 0 | 3483 | 0 | 0.3512 | 0 | 4.3771 | 0.9379 | 4 | 3.33300 | 0.8766 | 3 | 0.8550 | 0.8467 | 1 | 3.1962 | 0.8026 | 2 | 11.76130 | 0.9229 | 10 | 3385 | 1185 | 945 | 1682 | 3364 | 50.00000 | 0.9391 | 1 | 72 | 1577 | 4.565631 | 0.4586 | 0 | 185 | 468 | 39.52991 | 0.8332 | 1 | 362 | 477 | 75.89099 | 0.9703 | 1 | 547 | 945 | 57.88360 | 0.9477 | 1 | 592 | 1983 | 29.85376 | 0.9422 | 1 | 738 | 3385 | 21.802068 | 0.9817 | 1 | 240 | 7.090103 | 0.05988 | 0 | 1129 | 33.35303 | 0.9689 | 1 | 135 | 2256 | 5.984043 | 0.04817 | 0 | 110 | 717 | 15.34170 | 0.5822 | 0 | 721 | 3076 | 23.439532 | 0.95690 | 1 | 3029 | 3385 | 89.48301 | 0.8727 | 1 | 1185 | 9 | 0.7594937 | 0.2382 | 0 | 0 | 0.00000 | 0.3216 | 0 | 103 | 945 | 10.899471 | 0.9072 | 1 | 263 | 945 | 27.83069 | 0.7560 | 1 | 0 | 3385 | 0.0000000 | 0.1517 | 0 | 4.2693 | 0.9283 | 4 | 2.61605 | 0.5709 | 2 | 0.8727 | 0.8648 | 1 | 2.3747 | 0.4357 | 2 | 10.13275 | 0.7921 | 9 | Yes | 0 | 0 | $0 | 0 | 0 | $0 | 0 |
34001001100 | 34 | 001 | 001100 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 2204 | 1204 | 1204 | 1185 | 2204 | 53.76588 | 0.9457 | 1 | 219 | 927 | 23.624596 | 0.9830 | 1 | 97 | 172 | 56.39535 | 0.9094 | 1 | 462 | 1032 | 44.76744 | 0.4746 | 0 | 559 | 1204 | 46.42857 | 0.7197 | 0 | 346 | 1440 | 24.02778 | 0.8306 | 1 | 469 | 1942 | 24.15036 | 0.9360 | 1 | 363 | 16.470054 | 0.7020 | 0 | 578 | 26.22505 | 0.74410 | 0 | 442 | 1558 | 28.36970 | 0.9675 | 1 | 247 | 396 | 62.373737 | 0.9898 | 1 | 104 | 2051 | 5.070697 | 0.7260 | 0 | 2118 | 2204 | 96.09800 | 0.9204 | 1 | 1204 | 570 | 47.342193 | 0.8858 | 1 | 0 | 0.0000000 | 0.3251 | 0 | 14 | 1204 | 1.162791 | 0.4877 | 0 | 817 | 1204 | 67.85714 | 0.9413 | 1 | 0 | 2204 | 0 | 0.3512 | 0 | 4.4150 | 0.9451 | 4 | 4.12940 | 0.9805 | 2 | 0.9204 | 0.9114 | 1 | 2.9911 | 0.7243 | 2 | 12.45590 | 0.9597 | 9 | 1950 | 1267 | 1096 | 1131 | 1950 | 58.00000 | 0.9678 | 1 | 66 | 706 | 9.348442 | 0.8395 | 1 | 42 | 101 | 41.58416 | 0.8612 | 1 | 309 | 995 | 31.05528 | 0.1959 | 0 | 351 | 1096 | 32.02555 | 0.4782 | 0 | 510 | 1379 | 36.98332 | 0.9763 | 1 | 155 | 1950 | 7.948718 | 0.7660 | 1 | 392 | 20.102564 | 0.69880 | 0 | 447 | 22.92308 | 0.6712 | 0 | 570 | 1503 | 37.924152 | 0.99200 | 1 | 143 | 374 | 38.23529 | 0.9167 | 1 | 109 | 1841 | 5.920695 | 0.74640 | 0 | 1909 | 1950 | 97.89744 | 0.9529 | 1 | 1267 | 479 | 37.8058406 | 0.8464 | 1 | 0 | 0.00000 | 0.3216 | 0 | 33 | 1096 | 3.010949 | 0.6446 | 0 | 743 | 1096 | 67.79197 | 0.9414 | 1 | 0 | 1950 | 0.0000000 | 0.1517 | 0 | 4.0278 | 0.8848 | 4 | 4.02510 | 0.9798 | 2 | 0.9529 | 0.9442 | 1 | 2.9057 | 0.6869 | 2 | 11.91150 | 0.9365 | 9 | Yes | 0 | 0 | $0 | 0 | 0 | $0 | 0 |
34001001300 | 34 | 001 | 001300 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 2153 | 1026 | 857 | 695 | 2153 | 32.28054 | 0.7840 | 1 | 266 | 1112 | 23.920863 | 0.9840 | 1 | 168 | 432 | 38.88889 | 0.6425 | 0 | 271 | 425 | 63.76471 | 0.8714 | 1 | 439 | 857 | 51.22520 | 0.8184 | 1 | 210 | 1471 | 14.27600 | 0.5989 | 0 | 463 | 2215 | 20.90293 | 0.8974 | 1 | 334 | 15.513237 | 0.6436 | 0 | 539 | 25.03484 | 0.66990 | 0 | 222 | 1687 | 13.15945 | 0.4984 | 0 | 265 | 608 | 43.585526 | 0.9249 | 1 | 92 | 1905 | 4.829396 | 0.7187 | 0 | 1993 | 2153 | 92.56851 | 0.8890 | 1 | 1026 | 147 | 14.327485 | 0.6885 | 0 | 0 | 0.0000000 | 0.3251 | 0 | 20 | 857 | 2.333722 | 0.6326 | 0 | 142 | 857 | 16.56943 | 0.6382 | 0 | 0 | 2153 | 0 | 0.3512 | 0 | 4.0827 | 0.8798 | 4 | 3.45550 | 0.9039 | 1 | 0.8890 | 0.8804 | 1 | 2.6356 | 0.5687 | 0 | 11.06280 | 0.8673 | 6 | 1632 | 917 | 770 | 591 | 1632 | 36.21324 | 0.8455 | 1 | 203 | 854 | 23.770492 | 0.9928 | 1 | 164 | 291 | 56.35739 | 0.9604 | 1 | 364 | 479 | 75.99165 | 0.9710 | 1 | 528 | 770 | 68.57143 | 0.9914 | 1 | 150 | 1056 | 14.20455 | 0.7232 | 0 | 97 | 1632 | 5.943627 | 0.6352 | 0 | 301 | 18.443628 | 0.60940 | 0 | 271 | 16.60539 | 0.2292 | 0 | 314 | 1361 | 23.071271 | 0.88960 | 1 | 148 | 410 | 36.09756 | 0.9025 | 1 | 0 | 1585 | 0.000000 | 0.06953 | 0 | 1512 | 1632 | 92.64706 | 0.8931 | 1 | 917 | 246 | 26.8266085 | 0.7912 | 1 | 16 | 1.74482 | 0.7855 | 1 | 0 | 770 | 0.000000 | 0.1194 | 0 | 219 | 770 | 28.44156 | 0.7606 | 1 | 14 | 1632 | 0.8578431 | 0.6722 | 0 | 4.1881 | 0.9131 | 3 | 2.70023 | 0.6211 | 2 | 0.8931 | 0.8850 | 1 | 3.1289 | 0.7740 | 3 | 10.91033 | 0.8638 | 9 | Yes | 0 | 0 | $0 | 0 | 0 | $0 | 0 |
# Find count of NMTC projects after 2010
# Remove all tracts that do not have SVI flag counts for 2010
# Remove all tracts that do not have SVI flag counts for 2020
# Remove all tracts that had an NMTC project before 2010
svi_national_nmtc <-
left_join(svi_national_nmtc_eligible, nmtc_awards_post2010, join_by("GEOID_2010_trt" == "GEOID10")) %>%
mutate(post10_nmtc_project_cnt = if_else(is.na(post10_nmtc_project_cnt), 0, post10_nmtc_project_cnt)) %>%
mutate(post10_nmtc_dollars = if_else(is.na(post10_nmtc_dollars), 0, post10_nmtc_dollars))%>%
mutate(post10_nmtc_dollars_formatted = if_else(is.na(post10_nmtc_dollars_formatted), "$0", post10_nmtc_dollars_formatted)) %>%
mutate(nmtc_flag = if_else(post10_nmtc_project_cnt > 0, 1, 0)) %>%
filter(!is.na(F_TOTAL_10)) %>%
filter(!is.na(F_TOTAL_20)) %>%
filter(pre10_nmtc_project_cnt < 1)
svi_national_nmtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt | FIPS_st | FIPS_county | FIPS_tract | state | state_name | county | region_number | region | division_number | division | E_TOTPOP_10 | E_HU_10 | E_HH_10 | E_POV150_10 | ET_POVSTATUS_10 | EP_POV150_10 | EPL_POV150_10 | F_POV150_10 | E_UNEMP_10 | ET_EMPSTATUS_10 | EP_UNEMP_10 | EPL_UNEMP_10 | F_UNEMP_10 | E_HBURD_OWN_10 | ET_HOUSINGCOST_OWN_10 | EP_HBURD_OWN_10 | EPL_HBURD_OWN_10 | F_HBURD_OWN_10 | E_HBURD_RENT_10 | ET_HOUSINGCOST_RENT_10 | EP_HBURD_RENT_10 | EPL_HBURD_RENT_10 | F_HBURD_RENT_10 | E_HBURD_10 | ET_HOUSINGCOST_10 | EP_HBURD_10 | EPL_HBURD_10 | F_HBURD_10 | E_NOHSDP_10 | ET_EDSTATUS_10 | EP_NOHSDP_10 | EPL_NOHSDP_10 | F_NOHSDP_10 | E_UNINSUR_12 | ET_INSURSTATUS_12 | EP_UNINSUR_12 | EPL_UNINSUR_12 | F_UNINSUR_12 | E_AGE65_10 | EP_AGE65_10 | EPL_AGE65_10 | F_AGE65_10 | E_AGE17_10 | EP_AGE17_10 | EPL_AGE17_10 | F_AGE17_10 | E_DISABL_12 | ET_DISABLSTATUS_12 | EP_DISABL_12 | EPL_DISABL_12 | F_DISABL_12 | E_SNGPNT_10 | ET_FAMILIES_10 | EP_SNGPNT_10 | EPL_SNGPNT_10 | F_SNGPNT_10 | E_LIMENG_10 | ET_POPAGE5UP_10 | EP_LIMENG_10 | EPL_LIMENG_10 | F_LIMENG_10 | E_MINRTY_10 | ET_POPETHRACE_10 | EP_MINRTY_10 | EPL_MINRTY_10 | F_MINRTY_10 | E_STRHU_10 | E_MUNIT_10 | EP_MUNIT_10 | EPL_MUNIT_10 | F_MUNIT_10 | E_MOBILE_10 | EP_MOBILE_10 | EPL_MOBILE_10 | F_MOBILE_10 | E_CROWD_10 | ET_OCCUPANTS_10 | EP_CROWD_10 | EPL_CROWD_10 | F_CROWD_10 | E_NOVEH_10 | ET_KNOWNVEH_10 | EP_NOVEH_10 | EPL_NOVEH_10 | F_NOVEH_10 | E_GROUPQ_10 | ET_HHTYPE_10 | EP_GROUPQ_10 | EPL_GROUPQ_10 | F_GROUPQ_10 | SPL_THEME1_10 | RPL_THEME1_10 | F_THEME1_10 | SPL_THEME2_10 | RPL_THEME2_10 | F_THEME2_10 | SPL_THEME3_10 | RPL_THEME3_10 | F_THEME3_10 | SPL_THEME4_10 | RPL_THEME4_10 | F_THEME4_10 | SPL_THEMES_10 | RPL_THEMES_10 | F_TOTAL_10 | E_TOTPOP_20 | E_HU_20 | E_HH_20 | E_POV150_20 | ET_POVSTATUS_20 | EP_POV150_20 | EPL_POV150_20 | F_POV150_20 | E_UNEMP_20 | ET_EMPSTATUS_20 | EP_UNEMP_20 | EPL_UNEMP_20 | F_UNEMP_20 | E_HBURD_OWN_20 | ET_HOUSINGCOST_OWN_20 | EP_HBURD_OWN_20 | EPL_HBURD_OWN_20 | F_HBURD_OWN_20 | E_HBURD_RENT_20 | ET_HOUSINGCOST_RENT_20 | EP_HBURD_RENT_20 | EPL_HBURD_RENT_20 | F_HBURD_RENT_20 | E_HBURD_20 | ET_HOUSINGCOST_20 | EP_HBURD_20 | EPL_HBURD_20 | F_HBURD_20 | E_NOHSDP_20 | ET_EDSTATUS_20 | EP_NOHSDP_20 | EPL_NOHSDP_20 | F_NOHSDP_20 | E_UNINSUR_20 | ET_INSURSTATUS_20 | EP_UNINSUR_20 | EPL_UNINSUR_20 | F_UNINSUR_20 | E_AGE65_20 | EP_AGE65_20 | EPL_AGE65_20 | F_AGE65_20 | E_AGE17_20 | EP_AGE17_20 | EPL_AGE17_20 | F_AGE17_20 | E_DISABL_20 | ET_DISABLSTATUS_20 | EP_DISABL_20 | EPL_DISABL_20 | F_DISABL_20 | E_SNGPNT_20 | ET_FAMILIES_20 | EP_SNGPNT_20 | EPL_SNGPNT_20 | F_SNGPNT_20 | E_LIMENG_20 | ET_POPAGE5UP_20 | EP_LIMENG_20 | EPL_LIMENG_20 | F_LIMENG_20 | E_MINRTY_20 | ET_POPETHRACE_20 | EP_MINRTY_20 | EPL_MINRTY_20 | F_MINRTY_20 | E_STRHU_20 | E_MUNIT_20 | EP_MUNIT_20 | EPL_MUNIT_20 | F_MUNIT_20 | E_MOBILE_20 | EP_MOBILE_20 | EPL_MOBILE_20 | F_MOBILE_20 | E_CROWD_20 | ET_OCCUPANTS_20 | EP_CROWD_20 | EPL_CROWD_20 | F_CROWD_20 | E_NOVEH_20 | ET_KNOWNVEH_20 | EP_NOVEH_20 | EPL_NOVEH_20 | F_NOVEH_20 | E_GROUPQ_20 | ET_HHTYPE_20 | EP_GROUPQ_20 | EPL_GROUPQ_20 | F_GROUPQ_20 | SPL_THEME1_20 | RPL_THEME1_20 | F_THEME1_20 | SPL_THEME2_20 | RPL_THEME2_20 | F_THEME2_20 | SPL_THEME3_20 | RPL_THEME3_20 | F_THEME3_20 | SPL_THEME4_20 | RPL_THEME4_20 | F_THEME4_20 | SPL_THEMES_20 | RPL_THEMES_20 | F_TOTAL_20 | nmtc_eligibility | pre10_nmtc_project_cnt | pre10_nmtc_dollars | pre10_nmtc_dollars_formatted | post10_nmtc_project_cnt | post10_nmtc_dollars | post10_nmtc_dollars_formatted | nmtc_flag |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
01001020200 | 01 | 001 | 020200 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 2020 | 816 | 730 | 495 | 1992 | 24.84940 | 0.5954 | 0 | 68 | 834 | 8.153477 | 0.57540 | 0 | 49 | 439 | 11.16173 | 0.02067 | 0 | 105 | 291 | 36.08247 | 0.30190 | 0 | 154 | 730 | 21.09589 | 0.09312 | 0 | 339 | 1265 | 26.79842 | 0.8392 | 1 | 313 | 2012 | 15.55666 | 0.6000 | 0 | 204 | 10.09901 | 0.3419 | 0 | 597 | 29.55446 | 0.8192 | 1 | 359 | 1515 | 23.69637 | 0.8791 | 1 | 132 | 456 | 28.947368 | 0.8351 | 1 | 15 | 1890 | 0.7936508 | 0.40130 | 0 | 1243 | 2020 | 61.53465 | 0.7781 | 1 | 816 | 0 | 0.0000000 | 0.1224 | 0 | 34 | 4.1666667 | 0.6664 | 0 | 13 | 730 | 1.780822 | 0.5406 | 0 | 115 | 730 | 15.753425 | 0.8382 | 1 | 0 | 2020 | 0.0000 | 0.3640 | 0 | 2.70312 | 0.5665 | 1 | 3.27660 | 0.8614 | 3 | 0.7781 | 0.7709 | 1 | 2.5316 | 0.5047 | 1 | 9.28942 | 0.6832 | 6 | 1757 | 720 | 573 | 384 | 1511 | 25.41363 | 0.6427 | 0 | 29 | 717 | 4.044630 | 0.4132 | 0 | 33 | 392 | 8.418367 | 0.03542 | 0 | 116 | 181 | 64.08840 | 0.9086 | 1 | 149 | 573 | 26.00349 | 0.40410 | 0 | 139 | 1313 | 10.58644 | 0.5601 | 0 | 91 | 1533 | 5.936073 | 0.4343 | 0 | 284 | 16.163916 | 0.5169 | 0 | 325 | 18.49744 | 0.2851 | 0 | 164 | 1208.000 | 13.57616 | 0.4127 | 0 | 42 | 359.0000 | 11.699164 | 0.3998 | 0 | 0 | 1651 | 0.0000000 | 0.09479 | 0 | 1116 | 1757.000 | 63.51736 | 0.7591 | 1 | 720 | 3 | 0.4166667 | 0.2470 | 0 | 5 | 0.6944444 | 0.5106 | 0 | 9 | 573 | 1.5706806 | 0.4688 | 0 | 57 | 573.000 | 9.947644 | 0.7317 | 0 | 212 | 1757 | 12.0660216 | 0.9549 | 1 | 2.45440 | 0.4888 | 0 | 1.70929 | 0.1025 | 0 | 0.7591 | 0.7527 | 1 | 2.9130 | 0.6862 | 1 | 7.83579 | 0.4802 | 2 | Yes | 0 | 0 | $0 | 0 | 0 | $0 | 0 |
01001020700 | 01 | 001 | 020700 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 2664 | 1254 | 1139 | 710 | 2664 | 26.65165 | 0.6328 | 0 | 29 | 1310 | 2.213741 | 0.05255 | 0 | 134 | 710 | 18.87324 | 0.13890 | 0 | 187 | 429 | 43.58974 | 0.47090 | 0 | 321 | 1139 | 28.18262 | 0.28130 | 0 | 396 | 1852 | 21.38229 | 0.7478 | 0 | 345 | 2878 | 11.98749 | 0.4459 | 0 | 389 | 14.60210 | 0.6417 | 0 | 599 | 22.48499 | 0.4007 | 0 | 510 | 2168 | 23.52399 | 0.8752 | 1 | 228 | 712 | 32.022472 | 0.8712 | 1 | 0 | 2480 | 0.0000000 | 0.09298 | 0 | 694 | 2664 | 26.05105 | 0.5138 | 0 | 1254 | 8 | 0.6379585 | 0.2931 | 0 | 460 | 36.6826156 | 0.9714 | 1 | 0 | 1139 | 0.000000 | 0.1238 | 0 | 125 | 1139 | 10.974539 | 0.7477 | 0 | 0 | 2664 | 0.0000 | 0.3640 | 0 | 2.16035 | 0.4069 | 0 | 2.88178 | 0.6997 | 2 | 0.5138 | 0.5090 | 0 | 2.5000 | 0.4882 | 1 | 8.05593 | 0.5185 | 3 | 3562 | 1313 | 1248 | 1370 | 3528 | 38.83220 | 0.8512 | 1 | 128 | 1562 | 8.194622 | 0.7935 | 1 | 168 | 844 | 19.905213 | 0.44510 | 0 | 237 | 404 | 58.66337 | 0.8359 | 1 | 405 | 1248 | 32.45192 | 0.60420 | 0 | 396 | 2211 | 17.91045 | 0.7857 | 1 | 444 | 3547 | 12.517620 | 0.7758 | 1 | 355 | 9.966311 | 0.1800 | 0 | 954 | 26.78271 | 0.7923 | 1 | 629 | 2593.000 | 24.25762 | 0.8730 | 1 | 171 | 797.0000 | 21.455458 | 0.7186 | 0 | 0 | 3211 | 0.0000000 | 0.09479 | 0 | 1009 | 3562.000 | 28.32678 | 0.4668 | 0 | 1313 | 14 | 1.0662605 | 0.3165 | 0 | 443 | 33.7395278 | 0.9663 | 1 | 73 | 1248 | 5.8493590 | 0.8211 | 1 | 17 | 1248.000 | 1.362180 | 0.1554 | 0 | 112 | 3562 | 3.1443010 | 0.8514 | 1 | 3.81040 | 0.8569 | 4 | 2.65869 | 0.5847 | 2 | 0.4668 | 0.4629 | 0 | 3.1107 | 0.7714 | 3 | 10.04659 | 0.7851 | 9 | Yes | 0 | 0 | $0 | 0 | 0 | $0 | 0 |
01001021100 | 01 | 001 | 021100 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 3298 | 1502 | 1323 | 860 | 3298 | 26.07641 | 0.6211 | 0 | 297 | 1605 | 18.504673 | 0.94340 | 1 | 250 | 1016 | 24.60630 | 0.32070 | 0 | 74 | 307 | 24.10423 | 0.11920 | 0 | 324 | 1323 | 24.48980 | 0.17380 | 0 | 710 | 2231 | 31.82429 | 0.8976 | 1 | 654 | 3565 | 18.34502 | 0.7018 | 0 | 411 | 12.46210 | 0.5001 | 0 | 738 | 22.37720 | 0.3934 | 0 | 936 | 2861 | 32.71583 | 0.9807 | 1 | 138 | 825 | 16.727273 | 0.5715 | 0 | 9 | 3155 | 0.2852615 | 0.25010 | 0 | 1979 | 3298 | 60.00606 | 0.7703 | 1 | 1502 | 14 | 0.9320905 | 0.3234 | 0 | 659 | 43.8748336 | 0.9849 | 1 | 44 | 1323 | 3.325775 | 0.7062 | 0 | 137 | 1323 | 10.355253 | 0.7313 | 0 | 0 | 3298 | 0.0000 | 0.3640 | 0 | 3.33770 | 0.7351 | 2 | 2.69580 | 0.6028 | 1 | 0.7703 | 0.7631 | 1 | 3.1098 | 0.7827 | 1 | 9.91360 | 0.7557 | 5 | 3499 | 1825 | 1462 | 1760 | 3499 | 50.30009 | 0.9396 | 1 | 42 | 966 | 4.347826 | 0.4539 | 0 | 426 | 1274 | 33.437991 | 0.85200 | 1 | 52 | 188 | 27.65957 | 0.1824 | 0 | 478 | 1462 | 32.69494 | 0.61110 | 0 | 422 | 2488 | 16.96141 | 0.7638 | 1 | 497 | 3499 | 14.204058 | 0.8246 | 1 | 853 | 24.378394 | 0.8688 | 1 | 808 | 23.09231 | 0.5829 | 0 | 908 | 2691.100 | 33.74084 | 0.9808 | 1 | 179 | 811.6985 | 22.052524 | 0.7323 | 0 | 8 | 3248 | 0.2463054 | 0.26220 | 0 | 1986 | 3498.713 | 56.76373 | 0.7175 | 0 | 1825 | 29 | 1.5890411 | 0.3551 | 0 | 576 | 31.5616438 | 0.9594 | 1 | 88 | 1462 | 6.0191518 | 0.8269 | 1 | 148 | 1461.993 | 10.123166 | 0.7364 | 0 | 38 | 3499 | 1.0860246 | 0.7013 | 0 | 3.59300 | 0.8073 | 3 | 3.42700 | 0.9156 | 2 | 0.7175 | 0.7114 | 0 | 3.5791 | 0.9216 | 2 | 11.31660 | 0.9150 | 7 | Yes | 0 | 0 | $0 | 0 | 0 | $0 | 0 |
01003010200 | 01 | 003 | 010200 | AL | Alabama | Baldwin County | 3 | South Region | 6 | East South Central Division | 2612 | 1220 | 1074 | 338 | 2605 | 12.97505 | 0.2907 | 0 | 44 | 1193 | 3.688181 | 0.14720 | 0 | 172 | 928 | 18.53448 | 0.13090 | 0 | 31 | 146 | 21.23288 | 0.09299 | 0 | 203 | 1074 | 18.90130 | 0.05657 | 0 | 455 | 1872 | 24.30556 | 0.8016 | 1 | 456 | 2730 | 16.70330 | 0.6445 | 0 | 401 | 15.35222 | 0.6847 | 0 | 563 | 21.55436 | 0.3406 | 0 | 410 | 2038 | 20.11776 | 0.7755 | 1 | 64 | 779 | 8.215661 | 0.2181 | 0 | 0 | 2510 | 0.0000000 | 0.09298 | 0 | 329 | 2612 | 12.59571 | 0.3113 | 0 | 1220 | 38 | 3.1147541 | 0.4648 | 0 | 385 | 31.5573770 | 0.9545 | 1 | 20 | 1074 | 1.862197 | 0.5509 | 0 | 43 | 1074 | 4.003724 | 0.4088 | 0 | 0 | 2612 | 0.0000 | 0.3640 | 0 | 1.94057 | 0.3398 | 1 | 2.11188 | 0.2802 | 1 | 0.3113 | 0.3084 | 0 | 2.7430 | 0.6129 | 1 | 7.10675 | 0.3771 | 3 | 2928 | 1312 | 1176 | 884 | 2928 | 30.19126 | 0.7334 | 0 | 29 | 1459 | 1.987663 | 0.1356 | 0 | 71 | 830 | 8.554217 | 0.03726 | 0 | 134 | 346 | 38.72832 | 0.3964 | 0 | 205 | 1176 | 17.43197 | 0.12010 | 0 | 294 | 2052 | 14.32749 | 0.6940 | 0 | 219 | 2925 | 7.487179 | 0.5423 | 0 | 556 | 18.989071 | 0.6705 | 0 | 699 | 23.87295 | 0.6339 | 0 | 489 | 2226.455 | 21.96317 | 0.8122 | 1 | 191 | 783.8820 | 24.365914 | 0.7799 | 1 | 0 | 2710 | 0.0000000 | 0.09479 | 0 | 398 | 2927.519 | 13.59513 | 0.2511 | 0 | 1312 | 13 | 0.9908537 | 0.3111 | 0 | 400 | 30.4878049 | 0.9557 | 1 | 6 | 1176 | 0.5102041 | 0.2590 | 0 | 81 | 1176.202 | 6.886570 | 0.6115 | 0 | 7 | 2928 | 0.2390710 | 0.4961 | 0 | 2.22540 | 0.4183 | 0 | 2.99129 | 0.7634 | 2 | 0.2511 | 0.2490 | 0 | 2.6334 | 0.5496 | 1 | 8.10119 | 0.5207 | 3 | Yes | 0 | 0 | $0 | 1 | 408000 | $408,000 | 1 |
01003010500 | 01 | 003 | 010500 | AL | Alabama | Baldwin County | 3 | South Region | 6 | East South Central Division | 4230 | 1779 | 1425 | 498 | 3443 | 14.46413 | 0.3337 | 0 | 166 | 1625 | 10.215385 | 0.71790 | 0 | 151 | 1069 | 14.12535 | 0.04638 | 0 | 196 | 356 | 55.05618 | 0.73830 | 0 | 347 | 1425 | 24.35088 | 0.17010 | 0 | 707 | 2945 | 24.00679 | 0.7967 | 1 | 528 | 4001 | 13.19670 | 0.5005 | 0 | 619 | 14.63357 | 0.6436 | 0 | 790 | 18.67612 | 0.1937 | 0 | 536 | 3096 | 17.31266 | 0.6572 | 0 | 165 | 920 | 17.934783 | 0.6102 | 0 | 20 | 4021 | 0.4973887 | 0.32320 | 0 | 754 | 4230 | 17.82506 | 0.4023 | 0 | 1779 | 97 | 5.4525014 | 0.5525 | 0 | 8 | 0.4496908 | 0.4600 | 0 | 63 | 1425 | 4.421053 | 0.7762 | 1 | 90 | 1425 | 6.315790 | 0.5691 | 0 | 787 | 4230 | 18.6052 | 0.9649 | 1 | 2.51890 | 0.5121 | 1 | 2.42790 | 0.4539 | 0 | 0.4023 | 0.3986 | 0 | 3.3227 | 0.8628 | 2 | 8.67180 | 0.6054 | 3 | 5877 | 1975 | 1836 | 820 | 5244 | 15.63692 | 0.3902 | 0 | 90 | 2583 | 3.484321 | 0.3361 | 0 | 159 | 1345 | 11.821561 | 0.10530 | 0 | 139 | 491 | 28.30957 | 0.1924 | 0 | 298 | 1836 | 16.23094 | 0.09053 | 0 | 570 | 4248 | 13.41808 | 0.6669 | 0 | 353 | 5247 | 6.727654 | 0.4924 | 0 | 1109 | 18.870172 | 0.6645 | 0 | 1144 | 19.46571 | 0.3411 | 0 | 717 | 4102.545 | 17.47696 | 0.6332 | 0 | 103 | 1286.1180 | 8.008596 | 0.2341 | 0 | 0 | 5639 | 0.0000000 | 0.09479 | 0 | 868 | 5877.481 | 14.76823 | 0.2709 | 0 | 1975 | 26 | 1.3164557 | 0.3359 | 0 | 45 | 2.2784810 | 0.6271 | 0 | 9 | 1836 | 0.4901961 | 0.2540 | 0 | 116 | 1835.798 | 6.318779 | 0.5811 | 0 | 633 | 5877 | 10.7708014 | 0.9507 | 1 | 1.97613 | 0.3410 | 0 | 1.96769 | 0.1961 | 0 | 0.2709 | 0.2686 | 0 | 2.7488 | 0.6077 | 1 | 6.96352 | 0.3406 | 1 | Yes | 0 | 0 | $0 | 0 | 0 | $0 | 0 |
01003010600 | 01 | 003 | 010600 | AL | Alabama | Baldwin County | 3 | South Region | 6 | East South Central Division | 3724 | 1440 | 1147 | 1973 | 3724 | 52.98067 | 0.9342 | 1 | 142 | 1439 | 9.867964 | 0.69680 | 0 | 235 | 688 | 34.15698 | 0.62950 | 0 | 187 | 459 | 40.74074 | 0.40290 | 0 | 422 | 1147 | 36.79163 | 0.55150 | 0 | 497 | 1876 | 26.49254 | 0.8354 | 1 | 511 | 3661 | 13.95794 | 0.5334 | 0 | 246 | 6.60580 | 0.1481 | 0 | 1256 | 33.72718 | 0.9305 | 1 | 496 | 2522 | 19.66693 | 0.7587 | 1 | 274 | 838 | 32.696897 | 0.8779 | 1 | 32 | 3479 | 0.9198045 | 0.42810 | 0 | 2606 | 3724 | 69.97852 | 0.8184 | 1 | 1440 | 21 | 1.4583333 | 0.3683 | 0 | 321 | 22.2916667 | 0.9036 | 1 | 97 | 1147 | 8.456844 | 0.8956 | 1 | 167 | 1147 | 14.559721 | 0.8209 | 1 | 0 | 3724 | 0.0000 | 0.3640 | 0 | 3.55130 | 0.7859 | 2 | 3.14330 | 0.8145 | 3 | 0.8184 | 0.8108 | 1 | 3.3524 | 0.8725 | 3 | 10.86540 | 0.8550 | 9 | 4115 | 1534 | 1268 | 1676 | 3997 | 41.93145 | 0.8814 | 1 | 294 | 1809 | 16.252073 | 0.9674 | 1 | 341 | 814 | 41.891892 | 0.94320 | 1 | 204 | 454 | 44.93392 | 0.5438 | 0 | 545 | 1268 | 42.98107 | 0.83620 | 1 | 624 | 2425 | 25.73196 | 0.9002 | 1 | 994 | 4115 | 24.155529 | 0.9602 | 1 | 642 | 15.601458 | 0.4841 | 0 | 1126 | 27.36331 | 0.8175 | 1 | 568 | 2989.000 | 19.00301 | 0.7045 | 0 | 212 | 715.0000 | 29.650350 | 0.8592 | 1 | 56 | 3825 | 1.4640523 | 0.53120 | 0 | 2715 | 4115.000 | 65.97813 | 0.7732 | 1 | 1534 | 0 | 0.0000000 | 0.1079 | 0 | 529 | 34.4850065 | 0.9685 | 1 | 101 | 1268 | 7.9652997 | 0.8795 | 1 | 89 | 1268.000 | 7.018927 | 0.6184 | 0 | 17 | 4115 | 0.4131227 | 0.5707 | 0 | 4.54540 | 0.9754 | 5 | 3.39650 | 0.9081 | 2 | 0.7732 | 0.7667 | 1 | 3.1450 | 0.7858 | 2 | 11.86010 | 0.9520 | 10 | Yes | 0 | 0 | $0 | 1 | 8000000 | $8,000,000 | 1 |
# See all the states in data set with eligible tracts
svi_national_nmtc %>%
select(state) %>%
arrange(state) %>%
unique() %>%
mutate(n = row_number()) %>%
kbl() %>% kable_styling() %>% scroll_box(width = "100%")
state | n |
---|---|
AK | 1 |
AL | 2 |
AR | 3 |
AZ | 4 |
CA | 5 |
CO | 6 |
CT | 7 |
DC | 8 |
DE | 9 |
FL | 10 |
GA | 11 |
HI | 12 |
IA | 13 |
ID | 14 |
IL | 15 |
IN | 16 |
KS | 17 |
KY | 18 |
LA | 19 |
MA | 20 |
MD | 21 |
ME | 22 |
MI | 23 |
MN | 24 |
MO | 25 |
MS | 26 |
MT | 27 |
NC | 28 |
ND | 29 |
NE | 30 |
NH | 31 |
NJ | 32 |
NM | 33 |
NV | 34 |
NY | 35 |
OH | 36 |
OK | 37 |
OR | 38 |
PA | 39 |
RI | 40 |
SC | 41 |
SD | 42 |
TN | 43 |
TX | 44 |
UT | 45 |
VA | 46 |
VT | 47 |
WA | 48 |
WI | 49 |
WV | 50 |
WY | 51 |
state | n |
---|---|
AK | 1 |
AL | 2 |
AR | 3 |
AZ | 4 |
CA | 5 |
CO | 6 |
CT | 7 |
DC | 8 |
DE | 9 |
FL | 10 |
GA | 11 |
HI | 12 |
IA | 13 |
ID | 14 |
IL | 15 |
IN | 16 |
KS | 17 |
KY | 18 |
LA | 19 |
MA | 20 |
MD | 21 |
ME | 22 |
MI | 23 |
MN | 24 |
MO | 25 |
MS | 26 |
MT | 27 |
NC | 28 |
ND | 29 |
NE | 30 |
NH | 31 |
NJ | 32 |
NM | 33 |
NV | 34 |
NY | 35 |
OH | 36 |
OK | 37 |
OR | 38 |
PA | 39 |
RI | 40 |
SC | 41 |
SD | 42 |
TN | 43 |
TX | 44 |
UT | 45 |
VA | 46 |
VT | 47 |
WA | 48 |
WI | 49 |
WV | 50 |
WY | 51 |
View final number of rows in data set:
[1] 2054
[1] 27014
# See distribution of flags for SVI themes in top quarter in 2010
table(svi_national_nmtc$F_TOTAL_10)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
324 1177 2071 2679 2922 2975 2906 2849 2831 2776 2557 1782 904 264 45 6
# Average number of flags in 2010
mean(svi_national_nmtc$F_TOTAL_10)
[1] 6.367896
# See distribution of flags for SVI themes in top quarter in 2020
table(svi_national_nmtc$F_TOTAL_20)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
329 1070 1930 2620 3074 3195 3304 3243 3045 2745 2188 1415 674 203 32 1
# Average number of flags in 2020
mean(svi_national_nmtc$F_TOTAL_20)
[1] 6.236618
[1] 174
[1] 3530
# See distribution of flags for SVI themes in top quarter in 2010
table(svi_divisional_nmtc$F_TOTAL_10)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
40 148 241 350 321 323 340 346 361 331 336 282 183 90 11 1
# Average number of flags in 2010
mean(svi_divisional_nmtc$F_TOTAL_10)
[1] 6.723812
# See distribution of flags for SVI themes in top quarter in 2020
table(svi_divisional_nmtc$F_TOTAL_20)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
42 119 217 349 396 348 349 346 371 356 296 255 156 86 17 1
# Average number of flags in 2020
mean(svi_divisional_nmtc$F_TOTAL_20)
[1] 6.646868
Recall that we have data on counties in our data set:
[1] "GEOID_2010_trt" "FIPS_st" "FIPS_county" "FIPS_tract"
[5] "state" "state_name" "county" "region_number"
[9] "region" "division_number" "division"
Therefore we can summarize our project counts up to the county-level for easier visualizations with the following function NOTE: Remember to add all functions to project_data_steps.R
:
summarize_county_nmtc <- function(df) {
# Find count of new NMTC projects after 2010 by county
county_nmtc_project_cnt <- aggregate(df$post10_nmtc_project_cnt,
by=list(State=df$state,
County=df$county,
Division=df$division),
FUN=sum) %>%
arrange(State, County) %>%
rename("post10_nmtc_project_cnt" = "x")
# Find count of census tracts in each county
county_nmtc_tracts <- aggregate(df$GEOID_2010_trt,
by=list(State=df$state,
County=df$county,
Division=df$division),
FUN=length) %>%
mutate(tract_cnt = x) %>%
select (-x)
# Find sum of NMTC project dollars in each county
county_nmtc_dollars <- aggregate(df$post10_nmtc_dollars,
by=list(State=df$state,
County=df$county,
Division=df$division),
FUN=sum) %>%
arrange(State, County) %>%
rename("post10_nmtc_project_dollars" = "x")
# Create character column with NMTC dollars formatted as currency
county_nmtc_dollars$post10_nmtc_dollars_formatted <-
scales::dollar_format()(county_nmtc_dollars$post10_nmtc_project_dollars)
# Join project counts and census tract counts datasets
county_nmtc0 <- left_join(county_nmtc_project_cnt, county_nmtc_tracts,
join_by("State" == "State",
"County" == "County",
"Division" == "Division"))
# Add dollar amounts
county_nmtc <- left_join(county_nmtc0, county_nmtc_dollars,
join_by("State" == "State",
"County" == "County",
"Division" == "Division"))
# Output data
return(county_nmtc)
}
svi_national_nmtc_county_sum <- summarize_county_nmtc(svi_national_nmtc)
svi_national_nmtc_county_sum %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
State | County | Division | post10_nmtc_project_cnt | tract_cnt | post10_nmtc_project_dollars | post10_nmtc_dollars_formatted |
---|---|---|---|---|---|---|
AK | Aleutians East Borough | Pacific Division | 1 | 1 | 15762500 | $15,762,500 |
AK | Aleutians West Census Area | Pacific Division | 0 | 1 | 0 | $0 |
AK | Anchorage Municipality | Pacific Division | 1 | 13 | 9800000 | $9,800,000 |
AK | Bethel Census Area | Pacific Division | 0 | 1 | 0 | $0 |
AK | Fairbanks North Star Borough | Pacific Division | 0 | 4 | 0 | $0 |
AK | Hoonah-Angoon Census Area | Pacific Division | 0 | 1 | 0 | $0 |
svi_divisional_nmtc_county_sum <- summarize_county_nmtc(svi_divisional_nmtc)
svi_divisional_nmtc_county_sum %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
State | County | Division | post10_nmtc_project_cnt | tract_cnt | post10_nmtc_project_dollars | post10_nmtc_dollars_formatted |
---|---|---|---|---|---|---|
NJ | Atlantic County | Middle Atlantic Division | 0 | 29 | 0 | $0 |
NJ | Bergen County | Middle Atlantic Division | 1 | 30 | 10000000 | $10,000,000 |
NJ | Burlington County | Middle Atlantic Division | 0 | 20 | 0 | $0 |
NJ | Camden County | Middle Atlantic Division | 5 | 47 | 79664200 | $79,664,200 |
NJ | Cape May County | Middle Atlantic Division | 0 | 12 | 0 | $0 |
NJ | Cumberland County | Middle Atlantic Division | 2 | 21 | 33187593 | $33,187,593 |
We can then utilize our flag_summarize
function from Lab 03 to find our county-level SVI flag calculations:
# Create data frame of NMTC eligible tracts 2010 nationally
svi_national_nmtc10 <- svi_national_nmtc %>% select(GEOID_2010_trt, FIPS_st, FIPS_county,
state, state_name, county, region_number, region, division_number,
division, F_TOTAL_10, E_TOTPOP_10) %>% rename("F_TOTAL" = "F_TOTAL_10")
# Count national-level SVI flags for 2010, create unified fips column
svi_2010_national_county_flags_nmtc <- flag_summarize(svi_national_nmtc10, "E_TOTPOP_10") %>% unite("fips_county_st", FIPS_st:FIPS_county, remove = FALSE, sep="")
# Add suffix to flag columns 2010
colnames(svi_2010_national_county_flags_nmtc)[11:15] <- paste0(colnames(svi_2010_national_county_flags_nmtc)[11:15], 10)
# Create data frame of NMTC eligible tracts 2020 nationally
svi_national_nmtc20 <- svi_national_nmtc %>% select(GEOID_2010_trt, FIPS_st, FIPS_county,
state, state_name, county, region_number, region, division_number,
division, F_TOTAL_20, E_TOTPOP_20) %>% rename("F_TOTAL" = "F_TOTAL_20")
# Count national-level SVI flags for 2020, create unified fips column
svi_2020_national_county_flags_nmtc <- flag_summarize(svi_national_nmtc20, "E_TOTPOP_20") %>% unite("fips_county_st", FIPS_st:FIPS_county, remove = FALSE, sep="")
# Identify needed columns for 2020, add suffix
colnames(svi_2020_national_county_flags_nmtc)[11:15] <- paste0(colnames(svi_2020_national_county_flags_nmtc)[11:15], "20")
# Filter to needed columns for 2020 to avoid duplicate column column names
svi_2020_national_county_flags_join_nmtc <- svi_2020_national_county_flags_nmtc %>% ungroup() %>% select("fips_county_st", all_of(colnames(svi_2020_national_county_flags_nmtc)[11:15]))
# Join 2010 and 2020 data
svi_national_county_flags_nmtc <- left_join(svi_2010_national_county_flags_nmtc, svi_2020_national_county_flags_join_nmtc, join_by("fips_county_st" == "fips_county_st"))
svi_national_county_flags_nmtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
fips_county_st | FIPS_st | FIPS_county | state | state_name | county | region_number | region | division_number | division | flag_count10 | pop10 | flag_by_pop10 | flag_count_quantile10 | flag_pop_quantile10 | flag_count20 | pop20 | flag_by_pop20 | flag_count_quantile20 | flag_pop_quantile20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
01001 | 01 | 001 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 14 | 7982 | 0.0017539 | 0.6 | 0.8 | 18 | 8818 | 0.0020413 | 0.6 | 1.0 |
01003 | 01 | 003 | AL | Alabama | Baldwin County | 3 | South Region | 6 | East South Central Division | 34 | 38458 | 0.0008841 | 0.8 | 0.4 | 34 | 46255 | 0.0007351 | 0.8 | 0.2 |
01005 | 01 | 005 | AL | Alabama | Barbour County | 3 | South Region | 6 | East South Central Division | 43 | 21287 | 0.0020200 | 0.8 | 1.0 | 44 | 18811 | 0.0023391 | 0.8 | 1.0 |
01007 | 01 | 007 | AL | Alabama | Bibb County | 3 | South Region | 6 | East South Central Division | 11 | 17570 | 0.0006261 | 0.4 | 0.2 | 16 | 17663 | 0.0009058 | 0.6 | 0.4 |
01009 | 01 | 009 | AL | Alabama | Blount County | 3 | South Region | 6 | East South Central Division | 12 | 16995 | 0.0007061 | 0.4 | 0.2 | 8 | 16546 | 0.0004835 | 0.4 | 0.2 |
01011 | 01 | 011 | AL | Alabama | Bullock County | 3 | South Region | 6 | East South Central Division | 21 | 10923 | 0.0019225 | 0.6 | 1.0 | 18 | 10173 | 0.0017694 | 0.6 | 0.8 |
Join flags with NMTC county project summary data:
svi_national_county_nmtc <- left_join(svi_national_nmtc_county_sum,
svi_national_county_flags_nmtc,
join_by("State" == "state", "County" == "county",
"Division" == "division"))
svi_national_county_nmtc$post10_nmtc_project_cnt[is.na(svi_national_county_nmtc$post10_nmtc_project_cnt)] <- 0
svi_national_county_nmtc$county_name <- paste0(svi_national_county_nmtc$County, ", ", svi_national_county_nmtc$State)
svi_national_county_nmtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
State | County | Division | post10_nmtc_project_cnt | tract_cnt | post10_nmtc_project_dollars | post10_nmtc_dollars_formatted | fips_county_st | FIPS_st | FIPS_county | state_name | region_number | region | division_number | flag_count10 | pop10 | flag_by_pop10 | flag_count_quantile10 | flag_pop_quantile10 | flag_count20 | pop20 | flag_by_pop20 | flag_count_quantile20 | flag_pop_quantile20 | county_name |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AK | Aleutians East Borough | Pacific Division | 1 | 1 | 15762500 | $15,762,500 | 02013 | 02 | 013 | Alaska | 4 | West Region | 9 | 8 | 3703 | 0.0021604 | 0.4 | 1.0 | 5 | 3389 | 0.0014754 | 0.2 | 0.8 | Aleutians East Borough, AK |
AK | Aleutians West Census Area | Pacific Division | 0 | 1 | 0 | $0 | 02016 | 02 | 016 | Alaska | 4 | West Region | 9 | 6 | 1774 | 0.0033822 | 0.2 | 1.0 | 6 | 950 | 0.0063158 | 0.2 | 1.0 | Aleutians West Census Area, AK |
AK | Anchorage Municipality | Pacific Division | 1 | 13 | 9800000 | $9,800,000 | 02020 | 02 | 020 | Alaska | 4 | West Region | 9 | 72 | 64432 | 0.0011175 | 1.0 | 0.4 | 87 | 69679 | 0.0012486 | 1.0 | 0.6 | Anchorage Municipality, AK |
AK | Bethel Census Area | Pacific Division | 0 | 1 | 0 | $0 | 02050 | 02 | 050 | Alaska | 4 | West Region | 9 | 8 | 1386 | 0.0057720 | 0.4 | 1.0 | 10 | 1404 | 0.0071225 | 0.4 | 1.0 | Bethel Census Area, AK |
AK | Fairbanks North Star Borough | Pacific Division | 0 | 4 | 0 | $0 | 02090 | 02 | 090 | Alaska | 4 | West Region | 9 | 13 | 17281 | 0.0007523 | 0.4 | 0.2 | 17 | 20094 | 0.0008460 | 0.6 | 0.4 | Fairbanks North Star Borough, AK |
AK | Hoonah-Angoon Census Area | Pacific Division | 0 | 1 | 0 | $0 | 02105 | 02 | 105 | Alaska | 4 | West Region | 9 | 4 | 1888 | 0.0021186 | 0.2 | 1.0 | 5 | 2073 | 0.0024120 | 0.2 | 1.0 | Hoonah-Angoon Census Area, AK |
# Create data frame of NMTC eligible tracts 2020 nationally
svi_divisional_nmtc10 <- svi_divisional_nmtc %>% select(GEOID_2010_trt, FIPS_st, FIPS_county,
state, state_name, county, region_number, region, division_number,
division, F_TOTAL_10, E_TOTPOP_10) %>% rename("F_TOTAL" = "F_TOTAL_10")
# Count divisional-level SVI flags for 2010, create unified fips column
svi_2010_divisional_county_flags_nmtc <- flag_summarize(svi_divisional_nmtc10, "E_TOTPOP_10") %>% unite("fips_county_st", FIPS_st:FIPS_county, remove = FALSE, sep="")
# Add suffix to flag columns 2010
colnames(svi_2010_divisional_county_flags_nmtc)[11:15] <- paste0(colnames(svi_2010_divisional_county_flags_nmtc)[11:15], "10")
# Create data frame of NMTC eligible tracts 2020 nationally
svi_divisional_nmtc20 <- svi_divisional_nmtc %>% select(GEOID_2010_trt, FIPS_st, FIPS_county,
state, state_name, county, region_number, region, division_number,
division, F_TOTAL_20, E_TOTPOP_20) %>% rename("F_TOTAL" = "F_TOTAL_20")
# Count divisional-level SVI flags for 2020, create unified fips column
svi_2020_divisional_county_flags_nmtc <- flag_summarize(svi_divisional_nmtc20, "E_TOTPOP_20") %>% unite("fips_county_st", FIPS_st:FIPS_county, remove = FALSE, sep="")
# Identify needed columns for 2020
colnames(svi_2020_divisional_county_flags_nmtc)[11:15] <- paste0(colnames(svi_2020_divisional_county_flags_nmtc)[11:15], "20")
# Filter to needed columns for 2020 to avoid duplicate column column names
svi_2020_divisional_county_flags_join_nmtc <- svi_2020_divisional_county_flags_nmtc %>% ungroup() %>% select("fips_county_st", all_of(colnames(svi_2020_divisional_county_flags_nmtc)[11:15]))
# Join 2010 and 2020 data
svi_divisional_county_flags_nmtc <- left_join(svi_2010_divisional_county_flags_nmtc, svi_2020_divisional_county_flags_join_nmtc, join_by("fips_county_st" == "fips_county_st"))
svi_divisional_county_flags_nmtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
fips_county_st | FIPS_st | FIPS_county | state | state_name | county | region_number | region | division_number | division | flag_count10 | pop10 | flag_by_pop10 | flag_count_quantile10 | flag_pop_quantile10 | flag_count20 | pop20 | flag_by_pop20 | flag_count_quantile20 | flag_pop_quantile20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
34001 | 34 | 001 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 202 | 111752 | 0.0018076 | 1.0 | 1.0 | 220 | 108778 | 0.0020225 | 1.0 | 1.0 |
34003 | 34 | 003 | NJ | New Jersey | Bergen County | 1 | Northeast Region | 2 | Middle Atlantic Division | 146 | 143973 | 0.0010141 | 1.0 | 0.4 | 165 | 154365 | 0.0010689 | 1.0 | 0.4 |
34005 | 34 | 005 | NJ | New Jersey | Burlington County | 1 | Northeast Region | 2 | Middle Atlantic Division | 84 | 62519 | 0.0013436 | 0.8 | 0.6 | 86 | 61250 | 0.0014041 | 0.8 | 0.6 |
34007 | 34 | 007 | NJ | New Jersey | Camden County | 1 | Northeast Region | 2 | Middle Atlantic Division | 332 | 183630 | 0.0018080 | 1.0 | 1.0 | 315 | 180659 | 0.0017436 | 1.0 | 0.8 |
34009 | 34 | 009 | NJ | New Jersey | Cape May County | 1 | Northeast Region | 2 | Middle Atlantic Division | 59 | 39917 | 0.0014781 | 0.8 | 0.8 | 47 | 39348 | 0.0011945 | 0.6 | 0.6 |
34011 | 34 | 011 | NJ | New Jersey | Cumberland County | 1 | Northeast Region | 2 | Middle Atlantic Division | 138 | 101151 | 0.0013643 | 0.8 | 0.6 | 135 | 97989 | 0.0013777 | 0.8 | 0.6 |
Join flags with NMTC county project summary data for division:
svi_divisional_county_nmtc <- left_join(svi_divisional_nmtc_county_sum,
svi_divisional_county_flags_nmtc,
join_by("State" == "state", "County" == "county",
"Division" == "division"))
svi_divisional_county_nmtc$post10_nmtc_project_cnt[is.na(svi_divisional_county_nmtc $post10_nmtc_project_cnt)] <- 0
svi_divisional_county_nmtc$county_name <- paste0(svi_divisional_county_nmtc$County, ", ", svi_divisional_county_nmtc$State)
svi_divisional_county_nmtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
State | County | Division | post10_nmtc_project_cnt | tract_cnt | post10_nmtc_project_dollars | post10_nmtc_dollars_formatted | fips_county_st | FIPS_st | FIPS_county | state_name | region_number | region | division_number | flag_count10 | pop10 | flag_by_pop10 | flag_count_quantile10 | flag_pop_quantile10 | flag_count20 | pop20 | flag_by_pop20 | flag_count_quantile20 | flag_pop_quantile20 | county_name |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NJ | Atlantic County | Middle Atlantic Division | 0 | 29 | 0 | $0 | 34001 | 34 | 001 | New Jersey | 1 | Northeast Region | 2 | 202 | 111752 | 0.0018076 | 1.0 | 1.0 | 220 | 108778 | 0.0020225 | 1.0 | 1.0 | Atlantic County, NJ |
NJ | Bergen County | Middle Atlantic Division | 1 | 30 | 10000000 | $10,000,000 | 34003 | 34 | 003 | New Jersey | 1 | Northeast Region | 2 | 146 | 143973 | 0.0010141 | 1.0 | 0.4 | 165 | 154365 | 0.0010689 | 1.0 | 0.4 | Bergen County, NJ |
NJ | Burlington County | Middle Atlantic Division | 0 | 20 | 0 | $0 | 34005 | 34 | 005 | New Jersey | 1 | Northeast Region | 2 | 84 | 62519 | 0.0013436 | 0.8 | 0.6 | 86 | 61250 | 0.0014041 | 0.8 | 0.6 | Burlington County, NJ |
NJ | Camden County | Middle Atlantic Division | 5 | 47 | 79664200 | $79,664,200 | 34007 | 34 | 007 | New Jersey | 1 | Northeast Region | 2 | 332 | 183630 | 0.0018080 | 1.0 | 1.0 | 315 | 180659 | 0.0017436 | 1.0 | 0.8 | Camden County, NJ |
NJ | Cape May County | Middle Atlantic Division | 0 | 12 | 0 | $0 | 34009 | 34 | 009 | New Jersey | 1 | Northeast Region | 2 | 59 | 39917 | 0.0014781 | 0.8 | 0.8 | 47 | 39348 | 0.0011945 | 0.6 | 0.6 | Cape May County, NJ |
NJ | Cumberland County | Middle Atlantic Division | 2 | 21 | 33187593 | $33,187,593 | 34011 | 34 | 011 | New Jersey | 1 | Northeast Region | 2 | 138 | 101151 | 0.0013643 | 0.8 | 0.6 | 135 | 97989 | 0.0013777 | 0.8 | 0.6 | Cumberland County, NJ |
Now that we have our NMTC data wrangled, we need to repeat these steps for our LIHTC data:
# View column names
colnames(lihtc_eligible)
[1] "state" "county" "stcnty" "tract" "fips" "splittr"
[7] "qct_id" "old_cnty" "metro" "areapop" "cbsa" "cbsasub"
[13] "amgi2000" "amgi60pc" "pop100" "p015001" "p016001" "p087001"
[19] "p087002" "hhinc01" "hhinc02" "hhinc03" "hhinc04" "hhinc05"
[25] "hhinc06" "hhinc07" "hhinc08" "hhinc09" "hhinc10" "hhinc11"
[31] "hhinc12" "hhinc13" "hhinc14" "hhinc15" "hhinc16" "hhinc17"
[37] "hhinc18" "hhinc19" "hhinc20" "hhinc21" "hhinc22" "hhinc23"
[43] "hhinc24" "hhinc25" "hhinc26" "hhinc27" "hhinc28" "hhinc29"
[49] "hhinc30" "hhinc31" "hhinc32" "hhinc33" "hhinc34" "hhinc35"
[55] "hhinc36" "pctinc" "povrate" "qct_2010"
First we need to process our LIHTC eligibility data set to identify all census tracts eligible for the program:
lihtc_eligible_flag <- lihtc_eligible %>%
select("fips", "state", "county", "stcnty", "tract", "metro", "cbsa", "qct_2010") %>%
rename("GEOID10" = "fips") %>%
mutate(lihtc_eligibility = if_else(qct_2010 == 1, "Yes", "No")) %>%
filter(tolower(lihtc_eligibility) == "yes") %>%
select(GEOID10, lihtc_eligibility)
lihtc_eligible_flag %>% head()
# A tibble: 6 × 2
GEOID10 lihtc_eligibility
<chr> <chr>
1 01003010600 Yes
2 01005950200 Yes
3 01005950300 Yes
4 01005950400 Yes
5 01005950600 Yes
6 01005950700 Yes
Now we need to process our LIHTC projects data set to filter out the null values in our data set (we can identify these because we should not have any data for years in the 8000s or later (at least not yet 😉)). We also need to filter to only keep projects in 2010 or before:
fips2010 pre10_lihtc_project_cnt
1 01001020300 2
2 01001020500 5
3 01001021100 1
4 01003010200 1
5 01003010600 1
6 01003010703 1
Next, we can find the number of dollars in tax credits each tract received during this time:
lihtc_dollars10 <- lihtc_projects %>%
filter(yr_alloc < 8000) %>%
filter(yr_alloc <= 2010) %>%
select(fips2010, allocamt)
lihtc_dollars10$allocamt[is.na(lihtc_dollars10$allocamt)] <- 0
lihtc_dollars10 <- lihtc_dollars10 %>%
group_by(fips2010) %>%
summarise(pre10_lihtc_project_dollars = sum(allocamt, na.rm = TRUE))
lihtc_dollars10 %>% head()
# A tibble: 6 × 2
fips2010 pre10_lihtc_project_dollars
<chr> <dbl>
1 01001020300 216593
2 01001020500 2250459
3 01001021100 53109
4 01003010200 0
5 01003010600 376889
6 01003010703 717113
We can then join this to our projects data set:
fips2010 pre10_lihtc_project_cnt pre10_lihtc_project_dollars
1 01001020300 2 216593
2 01001020500 5 2250459
3 01001021100 1 53109
4 01003010200 1 0
5 01003010600 1 376889
6 01003010703 1 717113
Now we need to create a second data set of projects after 2010 and before 2021 (2011-2020):
colnames(lihtc_projects)
[1] "hud_id" "project" "proj_add"
[4] "proj_cty" "proj_st" "proj_zip"
[7] "state_id" "latitude" "longitude"
[10] "place1990" "place2000" "place2010"
[13] "fips1990" "fips2000" "fips2010"
[16] "st2010" "cnty2010" "scattered_site_cd"
[19] "resyndication_cd" "allocamt" "n_units"
[22] "li_units" "n_0br" "n_1br"
[25] "n_2br" "n_3br" "n_4br"
[28] "inc_ceil" "low_ceil" "ceilunit"
[31] "yr_pis" "yr_alloc" "non_prof"
[34] "basis" "bond" "mff_ra"
[37] "fmha_514" "fmha_515" "fmha_538"
[40] "home" "home_amt" "tcap"
[43] "tcap_amt" "cdbg" "cdbg_amt"
[46] "htf" "htf_amt" "fha"
[49] "hopevi" "hpvi_amt" "tcep"
[52] "tcep_amt" "rad" "qozf"
[55] "qozf_amt" "rentassist" "trgt_pop"
[58] "trgt_fam" "trgt_eld" "trgt_dis"
[61] "trgt_hml" "trgt_other" "trgt_spc"
[64] "type" "credit" "n_unitsr"
[67] "li_unitr" "metro" "dda"
[70] "qct" "nonprog" "nlm_reason"
[73] "nlm_spc" "datanote" "record_stat"
fips2010 post10_lihtc_project_cnt
1 01003010500 1
2 01003011403 1
3 01003011601 1
4 01005950900 1
5 01009050102 1
6 01017954600 2
Once again, we need to find the number of dollars in tax credits each tract received during this time:
lihtc_dollars20 <- lihtc_projects %>%
filter(yr_alloc < 8000) %>%
filter(yr_alloc > 2010) %>%
filter(yr_alloc < 2021) %>%
select(fips2010, allocamt)
lihtc_dollars20$allocamt[is.na(lihtc_dollars20$allocamt)] <- 0
lihtc_dollars20 <- lihtc_dollars20 %>%
group_by(fips2010) %>%
summarise(post10_lihtc_project_dollars = sum(allocamt, na.rm = TRUE))
lihtc_dollars20 %>% head()
# A tibble: 6 × 2
fips2010 post10_lihtc_project_dollars
<chr> <dbl>
1 01003010500 481325
2 01003011403 828342
3 01003011601 887856
4 01005950900 400758
5 01009050102 463000
6 01017954600 950192
lihtc_projects20 <- left_join(lihtc_projects20, lihtc_dollars20, join_by(fips2010 == fips2010))
lihtc_projects20 %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
fips2010 | post10_lihtc_project_cnt | post10_lihtc_project_dollars |
---|---|---|
01003010500 | 1 | 481325 |
01003011403 | 1 | 828342 |
01003011601 | 1 | 887856 |
01005950900 | 1 | 400758 |
01009050102 | 1 | 463000 |
01017954600 | 2 | 950192 |
Next, we need to join with our SVI divisional and national data:
svi_divisional_lihtc10 <- left_join(svi_divisional, lihtc_projects10, join_by("GEOID_2010_trt" == "fips2010"))
svi_divisional_lihtc10 %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt | FIPS_st | FIPS_county | FIPS_tract | state | state_name | county | region_number | region | division_number | division | E_TOTPOP_10 | E_HU_10 | E_HH_10 | E_POV150_10 | ET_POVSTATUS_10 | EP_POV150_10 | EPL_POV150_10 | F_POV150_10 | E_UNEMP_10 | ET_EMPSTATUS_10 | EP_UNEMP_10 | EPL_UNEMP_10 | F_UNEMP_10 | E_HBURD_OWN_10 | ET_HOUSINGCOST_OWN_10 | EP_HBURD_OWN_10 | EPL_HBURD_OWN_10 | F_HBURD_OWN_10 | E_HBURD_RENT_10 | ET_HOUSINGCOST_RENT_10 | EP_HBURD_RENT_10 | EPL_HBURD_RENT_10 | F_HBURD_RENT_10 | E_HBURD_10 | ET_HOUSINGCOST_10 | EP_HBURD_10 | EPL_HBURD_10 | F_HBURD_10 | E_NOHSDP_10 | ET_EDSTATUS_10 | EP_NOHSDP_10 | EPL_NOHSDP_10 | F_NOHSDP_10 | E_UNINSUR_12 | ET_INSURSTATUS_12 | EP_UNINSUR_12 | EPL_UNINSUR_12 | F_UNINSUR_12 | E_AGE65_10 | EP_AGE65_10 | EPL_AGE65_10 | F_AGE65_10 | E_AGE17_10 | EP_AGE17_10 | EPL_AGE17_10 | F_AGE17_10 | E_DISABL_12 | ET_DISABLSTATUS_12 | EP_DISABL_12 | EPL_DISABL_12 | F_DISABL_12 | E_SNGPNT_10 | ET_FAMILIES_10 | EP_SNGPNT_10 | EPL_SNGPNT_10 | F_SNGPNT_10 | E_LIMENG_10 | ET_POPAGE5UP_10 | EP_LIMENG_10 | EPL_LIMENG_10 | F_LIMENG_10 | E_MINRTY_10 | ET_POPETHRACE_10 | EP_MINRTY_10 | EPL_MINRTY_10 | F_MINRTY_10 | E_STRHU_10 | E_MUNIT_10 | EP_MUNIT_10 | EPL_MUNIT_10 | F_MUNIT_10 | E_MOBILE_10 | EP_MOBILE_10 | EPL_MOBILE_10 | F_MOBILE_10 | E_CROWD_10 | ET_OCCUPANTS_10 | EP_CROWD_10 | EPL_CROWD_10 | F_CROWD_10 | E_NOVEH_10 | ET_KNOWNVEH_10 | EP_NOVEH_10 | EPL_NOVEH_10 | F_NOVEH_10 | E_GROUPQ_10 | ET_HHTYPE_10 | EP_GROUPQ_10 | EPL_GROUPQ_10 | F_GROUPQ_10 | SPL_THEME1_10 | RPL_THEME1_10 | F_THEME1_10 | SPL_THEME2_10 | RPL_THEME2_10 | F_THEME2_10 | SPL_THEME3_10 | RPL_THEME3_10 | F_THEME3_10 | SPL_THEME4_10 | RPL_THEME4_10 | F_THEME4_10 | SPL_THEMES_10 | RPL_THEMES_10 | F_TOTAL_10 | E_TOTPOP_20 | E_HU_20 | E_HH_20 | E_POV150_20 | ET_POVSTATUS_20 | EP_POV150_20 | EPL_POV150_20 | F_POV150_20 | E_UNEMP_20 | ET_EMPSTATUS_20 | EP_UNEMP_20 | EPL_UNEMP_20 | F_UNEMP_20 | E_HBURD_OWN_20 | ET_HOUSINGCOST_OWN_20 | EP_HBURD_OWN_20 | EPL_HBURD_OWN_20 | F_HBURD_OWN_20 | E_HBURD_RENT_20 | ET_HOUSINGCOST_RENT_20 | EP_HBURD_RENT_20 | EPL_HBURD_RENT_20 | F_HBURD_RENT_20 | E_HBURD_20 | ET_HOUSINGCOST_20 | EP_HBURD_20 | EPL_HBURD_20 | F_HBURD_20 | E_NOHSDP_20 | ET_EDSTATUS_20 | EP_NOHSDP_20 | EPL_NOHSDP_20 | F_NOHSDP_20 | E_UNINSUR_20 | ET_INSURSTATUS_20 | EP_UNINSUR_20 | EPL_UNINSUR_20 | F_UNINSUR_20 | E_AGE65_20 | EP_AGE65_20 | EPL_AGE65_20 | F_AGE65_20 | E_AGE17_20 | EP_AGE17_20 | EPL_AGE17_20 | F_AGE17_20 | E_DISABL_20 | ET_DISABLSTATUS_20 | EP_DISABL_20 | EPL_DISABL_20 | F_DISABL_20 | E_SNGPNT_20 | ET_FAMILIES_20 | EP_SNGPNT_20 | EPL_SNGPNT_20 | F_SNGPNT_20 | E_LIMENG_20 | ET_POPAGE5UP_20 | EP_LIMENG_20 | EPL_LIMENG_20 | F_LIMENG_20 | E_MINRTY_20 | ET_POPETHRACE_20 | EP_MINRTY_20 | EPL_MINRTY_20 | F_MINRTY_20 | E_STRHU_20 | E_MUNIT_20 | EP_MUNIT_20 | EPL_MUNIT_20 | F_MUNIT_20 | E_MOBILE_20 | EP_MOBILE_20 | EPL_MOBILE_20 | F_MOBILE_20 | E_CROWD_20 | ET_OCCUPANTS_20 | EP_CROWD_20 | EPL_CROWD_20 | F_CROWD_20 | E_NOVEH_20 | ET_KNOWNVEH_20 | EP_NOVEH_20 | EPL_NOVEH_20 | F_NOVEH_20 | E_GROUPQ_20 | ET_HHTYPE_20 | EP_GROUPQ_20 | EPL_GROUPQ_20 | F_GROUPQ_20 | SPL_THEME1_20 | RPL_THEME1_20 | F_THEME1_20 | SPL_THEME2_20 | RPL_THEME2_20 | F_THEME2_20 | SPL_THEME3_20 | RPL_THEME3_20 | F_THEME3_20 | SPL_THEME4_20 | RPL_THEME4_20 | F_THEME4_20 | SPL_THEMES_20 | RPL_THEMES_20 | F_TOTAL_20 | pre10_lihtc_project_cnt | pre10_lihtc_project_dollars |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
34001000100 | 34 | 001 | 000100 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 2907 | 1088 | 983 | 1127 | 2907 | 38.76849 | 0.8482 | 1 | 144 | 1433 | 10.048849 | 0.7544 | 1 | 280 | 435 | 64.36782 | 0.9529 | 1 | 204 | 548 | 37.22628 | 0.2998 | 0 | 484 | 983 | 49.23703 | 0.7813 | 1 | 468 | 1759 | 26.60603 | 0.8634 | 1 | 532 | 2543 | 20.92017 | 0.8978 | 1 | 250 | 8.599931 | 0.1777 | 0 | 944 | 32.47334 | 0.94170 | 1 | 186 | 1851 | 10.04862 | 0.2706 | 0 | 266 | 678 | 39.233038 | 0.8981 | 1 | 177 | 2611 | 6.779012 | 0.7778 | 1 | 1928 | 2907 | 66.32267 | 0.7743 | 1 | 1088 | 113 | 10.386029 | 0.6229 | 0 | 9 | 0.8272059 | 0.7223 | 0 | 80 | 983 | 8.138352 | 0.8657 | 1 | 265 | 983 | 26.95829 | 0.7354 | 0 | 0 | 2907 | 0.000000 | 0.3512 | 0 | 4.1451 | 0.8935 | 5 | 3.06590 | 0.7944 | 3 | 0.7743 | 0.7667 | 1 | 3.2975 | 0.8414 | 1 | 11.28280 | 0.8862 | 10 | 2157 | 941 | 784 | 1182 | 2157 | 54.79833 | 0.9571 | 1 | 242 | 1058 | 22.873346 | 0.9922 | 1 | 215 | 342 | 62.86550 | 0.9780 | 1 | 316 | 442 | 71.49321 | 0.9481 | 1 | 531 | 784 | 67.72959 | 0.9893 | 1 | 396 | 1274 | 31.08320 | 0.9497 | 1 | 266 | 2157 | 12.331943 | 0.9041 | 1 | 185 | 8.576727 | 0.09430 | 0 | 552 | 25.59110 | 0.8128 | 1 | 297 | 1605 | 18.504673 | 0.74880 | 0 | 83 | 510 | 16.27451 | 0.6090 | 0 | 251 | 2020 | 12.425743 | 0.8710 | 1 | 1852 | 2157 | 85.85999 | 0.8476 | 1 | 941 | 118 | 12.5398512 | 0.6385 | 0 | 0 | 0.0000000 | 0.3216 | 0 | 67 | 784 | 8.545918 | 0.8657 | 1 | 212 | 784 | 27.04082 | 0.7502 | 1 | 0 | 2157 | 0.0000000 | 0.1517 | 0 | 4.7924 | 0.9850 | 5 | 3.13590 | 0.8217 | 2 | 0.8476 | 0.8400 | 1 | 2.7277 | 0.6085 | 2 | 11.50360 | 0.9104 | 10 | NA | NA |
34001000200 | 34 | 001 | 000200 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 3189 | 2217 | 1473 | 519 | 3189 | 16.27469 | 0.4806 | 0 | 109 | 1558 | 6.996149 | 0.5179 | 0 | 573 | 955 | 60.00000 | 0.9323 | 1 | 199 | 518 | 38.41699 | 0.3261 | 0 | 772 | 1473 | 52.41005 | 0.8418 | 1 | 405 | 2579 | 15.70376 | 0.6491 | 0 | 484 | 3547 | 13.64533 | 0.7154 | 0 | 847 | 26.560050 | 0.9629 | 1 | 436 | 13.67200 | 0.08181 | 0 | 608 | 3005 | 20.23295 | 0.8466 | 1 | 42 | 857 | 4.900817 | 0.1204 | 0 | 422 | 3072 | 13.736979 | 0.8799 | 1 | 1792 | 3189 | 56.19316 | 0.7390 | 0 | 2217 | 901 | 40.640505 | 0.8693 | 1 | 0 | 0.0000000 | 0.3251 | 0 | 48 | 1473 | 3.258656 | 0.7064 | 0 | 250 | 1473 | 16.97217 | 0.6444 | 0 | 0 | 3189 | 0.000000 | 0.3512 | 0 | 3.2048 | 0.6963 | 1 | 2.89161 | 0.7231 | 3 | 0.7390 | 0.7317 | 0 | 2.8964 | 0.6887 | 1 | 9.73181 | 0.7340 | 5 | 3510 | 2046 | 1353 | 1021 | 3510 | 29.08832 | 0.7682 | 1 | 121 | 1852 | 6.533477 | 0.6717 | 0 | 343 | 696 | 49.28161 | 0.9273 | 1 | 416 | 657 | 63.31811 | 0.8696 | 1 | 759 | 1353 | 56.09756 | 0.9321 | 1 | 553 | 2338 | 23.65269 | 0.8871 | 1 | 354 | 3510 | 10.085470 | 0.8530 | 1 | 643 | 18.319088 | 0.60310 | 0 | 1002 | 28.54701 | 0.9055 | 1 | 450 | 2508 | 17.942584 | 0.72330 | 0 | 237 | 786 | 30.15267 | 0.8539 | 1 | 534 | 3375 | 15.822222 | 0.9062 | 1 | 2534 | 3510 | 72.19373 | 0.7818 | 1 | 2046 | 906 | 44.2815249 | 0.8690 | 1 | 0 | 0.0000000 | 0.3216 | 0 | 119 | 1353 | 8.795270 | 0.8711 | 1 | 324 | 1353 | 23.94678 | 0.7255 | 0 | 0 | 3510 | 0.0000000 | 0.1517 | 0 | 4.1121 | 0.9003 | 4 | 3.99200 | 0.9781 | 3 | 0.7818 | 0.7747 | 1 | 2.9389 | 0.7011 | 2 | 11.82480 | 0.9310 | 10 | NA | NA |
34001000300 | 34 | 001 | 000300 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 3997 | 1823 | 1357 | 1401 | 3968 | 35.30746 | 0.8164 | 1 | 382 | 2238 | 17.068811 | 0.9376 | 1 | 176 | 329 | 53.49544 | 0.8855 | 1 | 604 | 1028 | 58.75486 | 0.7947 | 1 | 780 | 1357 | 57.47973 | 0.9165 | 1 | 920 | 2677 | 34.36683 | 0.9346 | 1 | 1351 | 4149 | 32.56206 | 0.9811 | 1 | 314 | 7.855892 | 0.1437 | 0 | 937 | 23.44258 | 0.55900 | 0 | 319 | 3054 | 10.44532 | 0.3000 | 0 | 187 | 782 | 23.913044 | 0.7498 | 0 | 1080 | 3671 | 29.419777 | 0.9742 | 1 | 3357 | 3997 | 83.98799 | 0.8419 | 1 | 1823 | 363 | 19.912233 | 0.7535 | 1 | 0 | 0.0000000 | 0.3251 | 0 | 150 | 1357 | 11.053795 | 0.9136 | 1 | 651 | 1357 | 47.97347 | 0.8585 | 1 | 0 | 3997 | 0.000000 | 0.3512 | 0 | 4.5862 | 0.9691 | 5 | 2.72670 | 0.6360 | 1 | 0.8419 | 0.8336 | 1 | 3.2019 | 0.8054 | 3 | 11.35670 | 0.8920 | 10 | 3801 | 1640 | 1226 | 1857 | 3801 | 48.85556 | 0.9333 | 1 | 226 | 1800 | 12.555556 | 0.9267 | 1 | 111 | 280 | 39.64286 | 0.8339 | 1 | 608 | 946 | 64.27061 | 0.8842 | 1 | 719 | 1226 | 58.64600 | 0.9528 | 1 | 650 | 2275 | 28.57143 | 0.9337 | 1 | 1027 | 3801 | 27.019206 | 0.9914 | 1 | 380 | 9.997369 | 0.14040 | 0 | 1223 | 32.17574 | 0.9607 | 1 | 219 | 2578 | 8.494957 | 0.15680 | 0 | 268 | 909 | 29.48295 | 0.8456 | 1 | 940 | 3400 | 27.647059 | 0.9728 | 1 | 3318 | 3801 | 87.29282 | 0.8579 | 1 | 1640 | 262 | 15.9756098 | 0.6917 | 0 | 0 | 0.0000000 | 0.3216 | 0 | 124 | 1226 | 10.114192 | 0.8955 | 1 | 477 | 1226 | 38.90701 | 0.8258 | 1 | 0 | 3801 | 0.0000000 | 0.1517 | 0 | 4.7379 | 0.9829 | 5 | 3.07630 | 0.8013 | 3 | 0.8579 | 0.8501 | 1 | 2.8863 | 0.6781 | 2 | 11.55840 | 0.9150 | 11 | NA | NA |
34001000400 | 34 | 001 | 000400 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 2902 | 2683 | 1401 | 1172 | 2902 | 40.38594 | 0.8615 | 1 | 190 | 1389 | 13.678906 | 0.8811 | 1 | 364 | 707 | 51.48515 | 0.8627 | 1 | 507 | 694 | 73.05476 | 0.9503 | 1 | 871 | 1401 | 62.16988 | 0.9572 | 1 | 481 | 1981 | 24.28067 | 0.8339 | 1 | 674 | 3204 | 21.03620 | 0.8998 | 1 | 434 | 14.955203 | 0.6083 | 0 | 596 | 20.53756 | 0.33980 | 0 | 426 | 2607 | 16.34062 | 0.6886 | 0 | 111 | 652 | 17.024540 | 0.6204 | 0 | 215 | 2736 | 7.858187 | 0.8008 | 1 | 1792 | 2902 | 61.75052 | 0.7584 | 1 | 2683 | 2049 | 76.369735 | 0.9401 | 1 | 0 | 0.0000000 | 0.3251 | 0 | 69 | 1401 | 4.925053 | 0.7847 | 1 | 511 | 1401 | 36.47395 | 0.7992 | 1 | 72 | 2902 | 2.481048 | 0.8114 | 1 | 4.4335 | 0.9468 | 5 | 3.05790 | 0.7908 | 1 | 0.7584 | 0.7510 | 1 | 3.6605 | 0.9391 | 4 | 11.91030 | 0.9339 | 11 | 3178 | 2264 | 1390 | 1508 | 3176 | 47.48111 | 0.9246 | 1 | 172 | 1804 | 9.534368 | 0.8460 | 1 | 205 | 468 | 43.80342 | 0.8858 | 1 | 622 | 922 | 67.46204 | 0.9192 | 1 | 827 | 1390 | 59.49640 | 0.9587 | 1 | 364 | 2076 | 17.53372 | 0.8013 | 1 | 476 | 3178 | 14.977974 | 0.9390 | 1 | 483 | 15.198238 | 0.41220 | 0 | 539 | 16.96035 | 0.2484 | 0 | 319 | 2639 | 12.087912 | 0.38790 | 0 | 101 | 565 | 17.87611 | 0.6539 | 0 | 583 | 3022 | 19.291860 | 0.9349 | 1 | 2186 | 3178 | 68.78540 | 0.7658 | 1 | 2264 | 1609 | 71.0689046 | 0.9266 | 1 | 15 | 0.6625442 | 0.7078 | 0 | 226 | 1390 | 16.258993 | 0.9567 | 1 | 599 | 1390 | 43.09353 | 0.8474 | 1 | 20 | 3178 | 0.6293266 | 0.6292 | 0 | 4.4696 | 0.9558 | 5 | 2.63730 | 0.5864 | 1 | 0.7658 | 0.7588 | 1 | 4.0677 | 0.9762 | 3 | 11.94040 | 0.9387 | 10 | NA | NA |
34001000500 | 34 | 001 | 000500 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 3483 | 1241 | 1027 | 1938 | 3483 | 55.64169 | 0.9533 | 1 | 124 | 1630 | 7.607362 | 0.5830 | 0 | 227 | 446 | 50.89686 | 0.8549 | 1 | 478 | 581 | 82.27194 | 0.9799 | 1 | 705 | 1027 | 68.64654 | 0.9863 | 1 | 733 | 2077 | 35.29129 | 0.9396 | 1 | 727 | 3258 | 22.31430 | 0.9149 | 1 | 377 | 10.824002 | 0.3081 | 0 | 1055 | 30.28998 | 0.90140 | 1 | 268 | 2401 | 11.16202 | 0.3549 | 0 | 209 | 763 | 27.391874 | 0.7940 | 1 | 911 | 3077 | 29.606760 | 0.9746 | 1 | 3036 | 3483 | 87.16624 | 0.8550 | 1 | 1241 | 52 | 4.190169 | 0.4505 | 0 | 4 | 0.3223207 | 0.6567 | 0 | 113 | 1027 | 11.002921 | 0.9128 | 1 | 422 | 1027 | 41.09056 | 0.8250 | 1 | 0 | 3483 | 0.000000 | 0.3512 | 0 | 4.3771 | 0.9379 | 4 | 3.33300 | 0.8766 | 3 | 0.8550 | 0.8467 | 1 | 3.1962 | 0.8026 | 2 | 11.76130 | 0.9229 | 10 | 3385 | 1185 | 945 | 1682 | 3364 | 50.00000 | 0.9391 | 1 | 72 | 1577 | 4.565631 | 0.4586 | 0 | 185 | 468 | 39.52991 | 0.8332 | 1 | 362 | 477 | 75.89099 | 0.9703 | 1 | 547 | 945 | 57.88360 | 0.9477 | 1 | 592 | 1983 | 29.85376 | 0.9422 | 1 | 738 | 3385 | 21.802068 | 0.9817 | 1 | 240 | 7.090103 | 0.05988 | 0 | 1129 | 33.35303 | 0.9689 | 1 | 135 | 2256 | 5.984043 | 0.04817 | 0 | 110 | 717 | 15.34170 | 0.5822 | 0 | 721 | 3076 | 23.439532 | 0.9569 | 1 | 3029 | 3385 | 89.48301 | 0.8727 | 1 | 1185 | 9 | 0.7594937 | 0.2382 | 0 | 0 | 0.0000000 | 0.3216 | 0 | 103 | 945 | 10.899471 | 0.9072 | 1 | 263 | 945 | 27.83069 | 0.7560 | 1 | 0 | 3385 | 0.0000000 | 0.1517 | 0 | 4.2693 | 0.9283 | 4 | 2.61605 | 0.5709 | 2 | 0.8727 | 0.8648 | 1 | 2.3747 | 0.4357 | 2 | 10.13275 | 0.7921 | 9 | NA | NA |
34001001100 | 34 | 001 | 001100 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 2204 | 1204 | 1204 | 1185 | 2204 | 53.76588 | 0.9457 | 1 | 219 | 927 | 23.624596 | 0.9830 | 1 | 97 | 172 | 56.39535 | 0.9094 | 1 | 462 | 1032 | 44.76744 | 0.4746 | 0 | 559 | 1204 | 46.42857 | 0.7197 | 0 | 346 | 1440 | 24.02778 | 0.8306 | 1 | 469 | 1942 | 24.15036 | 0.9360 | 1 | 363 | 16.470054 | 0.7020 | 0 | 578 | 26.22505 | 0.74410 | 0 | 442 | 1558 | 28.36970 | 0.9675 | 1 | 247 | 396 | 62.373737 | 0.9898 | 1 | 104 | 2051 | 5.070697 | 0.7260 | 0 | 2118 | 2204 | 96.09800 | 0.9204 | 1 | 1204 | 570 | 47.342193 | 0.8858 | 1 | 0 | 0.0000000 | 0.3251 | 0 | 14 | 1204 | 1.162791 | 0.4877 | 0 | 817 | 1204 | 67.85714 | 0.9413 | 1 | 0 | 2204 | 0.000000 | 0.3512 | 0 | 4.4150 | 0.9451 | 4 | 4.12940 | 0.9805 | 2 | 0.9204 | 0.9114 | 1 | 2.9911 | 0.7243 | 2 | 12.45590 | 0.9597 | 9 | 1950 | 1267 | 1096 | 1131 | 1950 | 58.00000 | 0.9678 | 1 | 66 | 706 | 9.348442 | 0.8395 | 1 | 42 | 101 | 41.58416 | 0.8612 | 1 | 309 | 995 | 31.05528 | 0.1959 | 0 | 351 | 1096 | 32.02555 | 0.4782 | 0 | 510 | 1379 | 36.98332 | 0.9763 | 1 | 155 | 1950 | 7.948718 | 0.7660 | 1 | 392 | 20.102564 | 0.69880 | 0 | 447 | 22.92308 | 0.6712 | 0 | 570 | 1503 | 37.924152 | 0.99200 | 1 | 143 | 374 | 38.23529 | 0.9167 | 1 | 109 | 1841 | 5.920695 | 0.7464 | 0 | 1909 | 1950 | 97.89744 | 0.9529 | 1 | 1267 | 479 | 37.8058406 | 0.8464 | 1 | 0 | 0.0000000 | 0.3216 | 0 | 33 | 1096 | 3.010949 | 0.6446 | 0 | 743 | 1096 | 67.79197 | 0.9414 | 1 | 0 | 1950 | 0.0000000 | 0.1517 | 0 | 4.0278 | 0.8848 | 4 | 4.02510 | 0.9798 | 2 | 0.9529 | 0.9442 | 1 | 2.9057 | 0.6869 | 2 | 11.91150 | 0.9365 | 9 | 1 | 0 |
svi_national_lihtc10 <- left_join(svi_national, lihtc_projects10, join_by("GEOID_2010_trt" == "fips2010"))
svi_national_lihtc10 %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt | FIPS_st | FIPS_county | FIPS_tract | state | state_name | county | region_number | region | division_number | division | E_TOTPOP_10 | E_HU_10 | E_HH_10 | E_POV150_10 | ET_POVSTATUS_10 | EP_POV150_10 | EPL_POV150_10 | F_POV150_10 | E_UNEMP_10 | ET_EMPSTATUS_10 | EP_UNEMP_10 | EPL_UNEMP_10 | F_UNEMP_10 | E_HBURD_OWN_10 | ET_HOUSINGCOST_OWN_10 | EP_HBURD_OWN_10 | EPL_HBURD_OWN_10 | F_HBURD_OWN_10 | E_HBURD_RENT_10 | ET_HOUSINGCOST_RENT_10 | EP_HBURD_RENT_10 | EPL_HBURD_RENT_10 | F_HBURD_RENT_10 | E_HBURD_10 | ET_HOUSINGCOST_10 | EP_HBURD_10 | EPL_HBURD_10 | F_HBURD_10 | E_NOHSDP_10 | ET_EDSTATUS_10 | EP_NOHSDP_10 | EPL_NOHSDP_10 | F_NOHSDP_10 | E_UNINSUR_12 | ET_INSURSTATUS_12 | EP_UNINSUR_12 | EPL_UNINSUR_12 | F_UNINSUR_12 | E_AGE65_10 | EP_AGE65_10 | EPL_AGE65_10 | F_AGE65_10 | E_AGE17_10 | EP_AGE17_10 | EPL_AGE17_10 | F_AGE17_10 | E_DISABL_12 | ET_DISABLSTATUS_12 | EP_DISABL_12 | EPL_DISABL_12 | F_DISABL_12 | E_SNGPNT_10 | ET_FAMILIES_10 | EP_SNGPNT_10 | EPL_SNGPNT_10 | F_SNGPNT_10 | E_LIMENG_10 | ET_POPAGE5UP_10 | EP_LIMENG_10 | EPL_LIMENG_10 | F_LIMENG_10 | E_MINRTY_10 | ET_POPETHRACE_10 | EP_MINRTY_10 | EPL_MINRTY_10 | F_MINRTY_10 | E_STRHU_10 | E_MUNIT_10 | EP_MUNIT_10 | EPL_MUNIT_10 | F_MUNIT_10 | E_MOBILE_10 | EP_MOBILE_10 | EPL_MOBILE_10 | F_MOBILE_10 | E_CROWD_10 | ET_OCCUPANTS_10 | EP_CROWD_10 | EPL_CROWD_10 | F_CROWD_10 | E_NOVEH_10 | ET_KNOWNVEH_10 | EP_NOVEH_10 | EPL_NOVEH_10 | F_NOVEH_10 | E_GROUPQ_10 | ET_HHTYPE_10 | EP_GROUPQ_10 | EPL_GROUPQ_10 | F_GROUPQ_10 | SPL_THEME1_10 | RPL_THEME1_10 | F_THEME1_10 | SPL_THEME2_10 | RPL_THEME2_10 | F_THEME2_10 | SPL_THEME3_10 | RPL_THEME3_10 | F_THEME3_10 | SPL_THEME4_10 | RPL_THEME4_10 | F_THEME4_10 | SPL_THEMES_10 | RPL_THEMES_10 | F_TOTAL_10 | E_TOTPOP_20 | E_HU_20 | E_HH_20 | E_POV150_20 | ET_POVSTATUS_20 | EP_POV150_20 | EPL_POV150_20 | F_POV150_20 | E_UNEMP_20 | ET_EMPSTATUS_20 | EP_UNEMP_20 | EPL_UNEMP_20 | F_UNEMP_20 | E_HBURD_OWN_20 | ET_HOUSINGCOST_OWN_20 | EP_HBURD_OWN_20 | EPL_HBURD_OWN_20 | F_HBURD_OWN_20 | E_HBURD_RENT_20 | ET_HOUSINGCOST_RENT_20 | EP_HBURD_RENT_20 | EPL_HBURD_RENT_20 | F_HBURD_RENT_20 | E_HBURD_20 | ET_HOUSINGCOST_20 | EP_HBURD_20 | EPL_HBURD_20 | F_HBURD_20 | E_NOHSDP_20 | ET_EDSTATUS_20 | EP_NOHSDP_20 | EPL_NOHSDP_20 | F_NOHSDP_20 | E_UNINSUR_20 | ET_INSURSTATUS_20 | EP_UNINSUR_20 | EPL_UNINSUR_20 | F_UNINSUR_20 | E_AGE65_20 | EP_AGE65_20 | EPL_AGE65_20 | F_AGE65_20 | E_AGE17_20 | EP_AGE17_20 | EPL_AGE17_20 | F_AGE17_20 | E_DISABL_20 | ET_DISABLSTATUS_20 | EP_DISABL_20 | EPL_DISABL_20 | F_DISABL_20 | E_SNGPNT_20 | ET_FAMILIES_20 | EP_SNGPNT_20 | EPL_SNGPNT_20 | F_SNGPNT_20 | E_LIMENG_20 | ET_POPAGE5UP_20 | EP_LIMENG_20 | EPL_LIMENG_20 | F_LIMENG_20 | E_MINRTY_20 | ET_POPETHRACE_20 | EP_MINRTY_20 | EPL_MINRTY_20 | F_MINRTY_20 | E_STRHU_20 | E_MUNIT_20 | EP_MUNIT_20 | EPL_MUNIT_20 | F_MUNIT_20 | E_MOBILE_20 | EP_MOBILE_20 | EPL_MOBILE_20 | F_MOBILE_20 | E_CROWD_20 | ET_OCCUPANTS_20 | EP_CROWD_20 | EPL_CROWD_20 | F_CROWD_20 | E_NOVEH_20 | ET_KNOWNVEH_20 | EP_NOVEH_20 | EPL_NOVEH_20 | F_NOVEH_20 | E_GROUPQ_20 | ET_HHTYPE_20 | EP_GROUPQ_20 | EPL_GROUPQ_20 | F_GROUPQ_20 | SPL_THEME1_20 | RPL_THEME1_20 | F_THEME1_20 | SPL_THEME2_20 | RPL_THEME2_20 | F_THEME2_20 | SPL_THEME3_20 | RPL_THEME3_20 | F_THEME3_20 | SPL_THEME4_20 | RPL_THEME4_20 | F_THEME4_20 | SPL_THEMES_20 | RPL_THEMES_20 | F_TOTAL_20 | pre10_lihtc_project_cnt | pre10_lihtc_project_dollars |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
01001020100 | 01 | 001 | 020100 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 1809 | 771 | 696 | 297 | 1809 | 16.41791 | 0.3871 | 0 | 36 | 889 | 4.049494 | 0.1790 | 0 | 127 | 598 | 21.23746 | 0.20770 | 0 | 47 | 98 | 47.95918 | 0.5767 | 0 | 174 | 696 | 25.00000 | 0.18790 | 0 | 196 | 1242 | 15.780998 | 0.6093 | 0 | 186 | 1759 | 10.574190 | 0.3790 | 0 | 222 | 12.271973 | 0.4876 | 0 | 445 | 24.59923 | 0.5473 | 0 | 298 | 1335 | 22.32210 | 0.8454 | 1 | 27 | 545 | 4.954128 | 0.09275 | 0 | 36 | 1705 | 2.1114370 | 0.59040 | 0 | 385 | 1809 | 21.282477 | 0.4524 | 0 | 771 | 0 | 0.0000000 | 0.1224 | 0 | 92 | 11.9325551 | 0.8005 | 1 | 0 | 696 | 0.0000000 | 0.1238 | 0 | 50 | 696 | 7.183908 | 0.6134 | 0 | 0 | 1809 | 0 | 0.364 | 0 | 1.74230 | 0.28200 | 0 | 2.56345 | 0.5296 | 1 | 0.4524 | 0.4482 | 0 | 2.0241 | 0.2519 | 1 | 6.78225 | 0.3278 | 2 | 1941 | 710 | 693 | 352 | 1941 | 18.13498 | 0.4630 | 0 | 18 | 852 | 2.112676 | 0.15070 | 0 | 81 | 507 | 15.976331 | 0.26320 | 0 | 63 | 186 | 33.87097 | 0.2913 | 0 | 144 | 693 | 20.77922 | 0.2230 | 0 | 187 | 1309 | 14.285714 | 0.6928 | 0 | 187 | 1941 | 9.634209 | 0.6617 | 0 | 295 | 15.19835 | 0.4601 | 0 | 415 | 21.38073 | 0.4681 | 0 | 391 | 1526 | 25.62254 | 0.9011 | 1 | 58 | 555 | 10.45045 | 0.3451 | 0 | 0 | 1843 | 0.0000000 | 0.09479 | 0 | 437 | 1941 | 22.51417 | 0.3902 | 0 | 710 | 0 | 0.0000000 | 0.1079 | 0 | 88 | 12.3943662 | 0.8263 | 1 | 0 | 693 | 0.0000000 | 0.09796 | 0 | 10 | 693 | 1.443001 | 0.1643 | 0 | 0 | 1941 | 0.000000 | 0.1831 | 0 | 2.19120 | 0.4084 | 0 | 2.26919 | 0.3503 | 1 | 0.3902 | 0.3869 | 0 | 1.37956 | 0.07216 | 1 | 6.23015 | 0.2314 | 2 | NA | NA |
01001020200 | 01 | 001 | 020200 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 2020 | 816 | 730 | 495 | 1992 | 24.84940 | 0.5954 | 0 | 68 | 834 | 8.153477 | 0.5754 | 0 | 49 | 439 | 11.16173 | 0.02067 | 0 | 105 | 291 | 36.08247 | 0.3019 | 0 | 154 | 730 | 21.09589 | 0.09312 | 0 | 339 | 1265 | 26.798419 | 0.8392 | 1 | 313 | 2012 | 15.556660 | 0.6000 | 0 | 204 | 10.099010 | 0.3419 | 0 | 597 | 29.55446 | 0.8192 | 1 | 359 | 1515 | 23.69637 | 0.8791 | 1 | 132 | 456 | 28.947368 | 0.83510 | 1 | 15 | 1890 | 0.7936508 | 0.40130 | 0 | 1243 | 2020 | 61.534653 | 0.7781 | 1 | 816 | 0 | 0.0000000 | 0.1224 | 0 | 34 | 4.1666667 | 0.6664 | 0 | 13 | 730 | 1.7808219 | 0.5406 | 0 | 115 | 730 | 15.753425 | 0.8382 | 1 | 0 | 2020 | 0 | 0.364 | 0 | 2.70312 | 0.56650 | 1 | 3.27660 | 0.8614 | 3 | 0.7781 | 0.7709 | 1 | 2.5316 | 0.5047 | 1 | 9.28942 | 0.6832 | 6 | 1757 | 720 | 573 | 384 | 1511 | 25.41363 | 0.6427 | 0 | 29 | 717 | 4.044630 | 0.41320 | 0 | 33 | 392 | 8.418367 | 0.03542 | 0 | 116 | 181 | 64.08840 | 0.9086 | 1 | 149 | 573 | 26.00349 | 0.4041 | 0 | 139 | 1313 | 10.586443 | 0.5601 | 0 | 91 | 1533 | 5.936073 | 0.4343 | 0 | 284 | 16.16392 | 0.5169 | 0 | 325 | 18.49744 | 0.2851 | 0 | 164 | 1208 | 13.57616 | 0.4127 | 0 | 42 | 359 | 11.69916 | 0.3998 | 0 | 0 | 1651 | 0.0000000 | 0.09479 | 0 | 1116 | 1757 | 63.51736 | 0.7591 | 1 | 720 | 3 | 0.4166667 | 0.2470 | 0 | 5 | 0.6944444 | 0.5106 | 0 | 9 | 573 | 1.5706806 | 0.46880 | 0 | 57 | 573 | 9.947644 | 0.7317 | 0 | 212 | 1757 | 12.066022 | 0.9549 | 1 | 2.45440 | 0.4888 | 0 | 1.70929 | 0.1025 | 0 | 0.7591 | 0.7527 | 1 | 2.91300 | 0.68620 | 1 | 7.83579 | 0.4802 | 2 | NA | NA |
01001020300 | 01 | 001 | 020300 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 3543 | 1403 | 1287 | 656 | 3533 | 18.56779 | 0.4443 | 0 | 93 | 1552 | 5.992268 | 0.3724 | 0 | 273 | 957 | 28.52665 | 0.45780 | 0 | 178 | 330 | 53.93939 | 0.7152 | 0 | 451 | 1287 | 35.04274 | 0.49930 | 0 | 346 | 2260 | 15.309734 | 0.5950 | 0 | 252 | 3102 | 8.123791 | 0.2596 | 0 | 487 | 13.745413 | 0.5868 | 0 | 998 | 28.16822 | 0.7606 | 1 | 371 | 2224 | 16.68165 | 0.6266 | 0 | 126 | 913 | 13.800657 | 0.46350 | 0 | 0 | 3365 | 0.0000000 | 0.09298 | 0 | 637 | 3543 | 17.979114 | 0.4049 | 0 | 1403 | 10 | 0.7127584 | 0.3015 | 0 | 2 | 0.1425517 | 0.4407 | 0 | 0 | 1287 | 0.0000000 | 0.1238 | 0 | 101 | 1287 | 7.847708 | 0.6443 | 0 | 0 | 3543 | 0 | 0.364 | 0 | 2.17060 | 0.41010 | 0 | 2.53048 | 0.5116 | 1 | 0.4049 | 0.4011 | 0 | 1.8743 | 0.1942 | 0 | 6.98028 | 0.3576 | 1 | 3694 | 1464 | 1351 | 842 | 3694 | 22.79372 | 0.5833 | 0 | 53 | 1994 | 2.657974 | 0.22050 | 0 | 117 | 967 | 12.099276 | 0.11370 | 0 | 147 | 384 | 38.28125 | 0.3856 | 0 | 264 | 1351 | 19.54108 | 0.1827 | 0 | 317 | 2477 | 12.797739 | 0.6460 | 0 | 127 | 3673 | 3.457664 | 0.2308 | 0 | 464 | 12.56091 | 0.3088 | 0 | 929 | 25.14889 | 0.7080 | 0 | 473 | 2744 | 17.23761 | 0.6211 | 0 | 263 | 975 | 26.97436 | 0.8234 | 1 | 128 | 3586 | 3.5694367 | 0.70770 | 0 | 1331 | 3694 | 36.03140 | 0.5515 | 0 | 1464 | 26 | 1.7759563 | 0.3675 | 0 | 14 | 0.9562842 | 0.5389 | 0 | 35 | 1351 | 2.5906736 | 0.60550 | 0 | 42 | 1351 | 3.108808 | 0.3415 | 0 | 0 | 3694 | 0.000000 | 0.1831 | 0 | 1.86330 | 0.3063 | 0 | 3.16900 | 0.8380 | 1 | 0.5515 | 0.5468 | 0 | 2.03650 | 0.26830 | 0 | 7.62030 | 0.4460 | 1 | 2 | 216593 |
01001020400 | 01 | 001 | 020400 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 4840 | 1957 | 1839 | 501 | 4840 | 10.35124 | 0.2177 | 0 | 101 | 2129 | 4.744011 | 0.2447 | 0 | 310 | 1549 | 20.01291 | 0.17080 | 0 | 89 | 290 | 30.68966 | 0.2044 | 0 | 399 | 1839 | 21.69657 | 0.10540 | 0 | 274 | 3280 | 8.353658 | 0.3205 | 0 | 399 | 4293 | 9.294200 | 0.3171 | 0 | 955 | 19.731405 | 0.8643 | 1 | 1195 | 24.69008 | 0.5530 | 0 | 625 | 3328 | 18.78005 | 0.7233 | 0 | 152 | 1374 | 11.062591 | 0.34710 | 0 | 10 | 4537 | 0.2204100 | 0.22560 | 0 | 297 | 4840 | 6.136364 | 0.1647 | 0 | 1957 | 33 | 1.6862545 | 0.3843 | 0 | 25 | 1.2774655 | 0.5516 | 0 | 14 | 1839 | 0.7612833 | 0.3564 | 0 | 19 | 1839 | 1.033170 | 0.1127 | 0 | 0 | 4840 | 0 | 0.364 | 0 | 1.20540 | 0.13470 | 0 | 2.71330 | 0.6129 | 1 | 0.1647 | 0.1632 | 0 | 1.7690 | 0.1591 | 0 | 5.85240 | 0.1954 | 1 | 3539 | 1741 | 1636 | 503 | 3539 | 14.21305 | 0.3472 | 0 | 39 | 1658 | 2.352232 | 0.17990 | 0 | 219 | 1290 | 16.976744 | 0.30880 | 0 | 74 | 346 | 21.38728 | 0.1037 | 0 | 293 | 1636 | 17.90954 | 0.1333 | 0 | 173 | 2775 | 6.234234 | 0.3351 | 0 | 169 | 3529 | 4.788892 | 0.3448 | 0 | 969 | 27.38062 | 0.9225 | 1 | 510 | 14.41085 | 0.1208 | 0 | 670 | 3019 | 22.19278 | 0.8194 | 1 | 148 | 1137 | 13.01671 | 0.4541 | 0 | 89 | 3409 | 2.6107363 | 0.64690 | 0 | 454 | 3539 | 12.82848 | 0.2364 | 0 | 1741 | 143 | 8.2136703 | 0.6028 | 0 | 0 | 0.0000000 | 0.2186 | 0 | 10 | 1636 | 0.6112469 | 0.28340 | 0 | 72 | 1636 | 4.400978 | 0.4538 | 0 | 0 | 3539 | 0.000000 | 0.1831 | 0 | 1.34030 | 0.1575 | 0 | 2.96370 | 0.7496 | 2 | 0.2364 | 0.2344 | 0 | 1.74170 | 0.16270 | 0 | 6.28210 | 0.2389 | 2 | NA | NA |
01001020500 | 01 | 001 | 020500 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 9938 | 3969 | 3741 | 1096 | 9938 | 11.02838 | 0.2364 | 0 | 188 | 4937 | 3.807981 | 0.1577 | 0 | 426 | 2406 | 17.70574 | 0.11050 | 0 | 528 | 1335 | 39.55056 | 0.3753 | 0 | 954 | 3741 | 25.50120 | 0.20140 | 0 | 293 | 5983 | 4.897209 | 0.1655 | 0 | 740 | 10110 | 7.319486 | 0.2211 | 0 | 837 | 8.422218 | 0.2408 | 0 | 3012 | 30.30791 | 0.8455 | 1 | 759 | 7155 | 10.60797 | 0.2668 | 0 | 476 | 2529 | 18.821669 | 0.63540 | 0 | 78 | 9297 | 0.8389803 | 0.41110 | 0 | 1970 | 9938 | 19.822902 | 0.4330 | 0 | 3969 | 306 | 7.7097506 | 0.6153 | 0 | 0 | 0.0000000 | 0.2198 | 0 | 7 | 3741 | 0.1871157 | 0.2535 | 0 | 223 | 3741 | 5.960973 | 0.5483 | 0 | 0 | 9938 | 0 | 0.364 | 0 | 0.98210 | 0.08468 | 0 | 2.39960 | 0.4381 | 1 | 0.4330 | 0.4290 | 0 | 2.0009 | 0.2430 | 0 | 5.81560 | 0.1905 | 1 | 10674 | 4504 | 4424 | 1626 | 10509 | 15.47245 | 0.3851 | 0 | 81 | 5048 | 1.604596 | 0.09431 | 0 | 321 | 2299 | 13.962592 | 0.17970 | 0 | 711 | 2125 | 33.45882 | 0.2836 | 0 | 1032 | 4424 | 23.32731 | 0.3109 | 0 | 531 | 6816 | 7.790493 | 0.4251 | 0 | 301 | 10046 | 2.996217 | 0.1894 | 0 | 1613 | 15.11149 | 0.4553 | 0 | 2765 | 25.90407 | 0.7494 | 0 | 1124 | 7281 | 15.43744 | 0.5253 | 0 | 342 | 2912 | 11.74451 | 0.4019 | 0 | 52 | 9920 | 0.5241935 | 0.35230 | 0 | 2603 | 10674 | 24.38636 | 0.4160 | 0 | 4504 | 703 | 15.6083481 | 0.7378 | 0 | 29 | 0.6438721 | 0.5037 | 0 | 37 | 4424 | 0.8363472 | 0.33420 | 0 | 207 | 4424 | 4.679023 | 0.4754 | 0 | 176 | 10674 | 1.648866 | 0.7598 | 1 | 1.40481 | 0.1743 | 0 | 2.48420 | 0.4802 | 0 | 0.4160 | 0.4125 | 0 | 2.81090 | 0.63730 | 1 | 7.11591 | 0.3654 | 1 | 5 | 2250459 |
01001020600 | 01 | 001 | 020600 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 3402 | 1456 | 1308 | 735 | 3402 | 21.60494 | 0.5199 | 0 | 134 | 1720 | 7.790698 | 0.5436 | 0 | 242 | 1032 | 23.44961 | 0.28010 | 0 | 62 | 276 | 22.46377 | 0.1035 | 0 | 304 | 1308 | 23.24159 | 0.14070 | 0 | 301 | 2151 | 13.993491 | 0.5510 | 0 | 355 | 3445 | 10.304790 | 0.3656 | 0 | 386 | 11.346267 | 0.4232 | 0 | 931 | 27.36626 | 0.7200 | 0 | 440 | 2439 | 18.04018 | 0.6912 | 0 | 143 | 924 | 15.476190 | 0.52900 | 0 | 4 | 3254 | 0.1229256 | 0.19840 | 0 | 723 | 3402 | 21.252205 | 0.4519 | 0 | 1456 | 18 | 1.2362637 | 0.3507 | 0 | 433 | 29.7390110 | 0.9468 | 1 | 16 | 1308 | 1.2232416 | 0.4493 | 0 | 28 | 1308 | 2.140673 | 0.2298 | 0 | 0 | 3402 | 0 | 0.364 | 0 | 2.12080 | 0.39510 | 0 | 2.56180 | 0.5288 | 0 | 0.4519 | 0.4477 | 0 | 2.3406 | 0.4048 | 1 | 7.47510 | 0.4314 | 1 | 3536 | 1464 | 1330 | 1279 | 3523 | 36.30429 | 0.8215 | 1 | 34 | 1223 | 2.780049 | 0.23780 | 0 | 321 | 1111 | 28.892889 | 0.75870 | 1 | 67 | 219 | 30.59361 | 0.2305 | 0 | 388 | 1330 | 29.17293 | 0.5075 | 0 | 306 | 2380 | 12.857143 | 0.6480 | 0 | 415 | 3496 | 11.870709 | 0.7535 | 1 | 547 | 15.46946 | 0.4760 | 0 | 982 | 27.77149 | 0.8327 | 1 | 729 | 2514 | 28.99761 | 0.9488 | 1 | 95 | 880 | 10.79545 | 0.3601 | 0 | 0 | 3394 | 0.0000000 | 0.09479 | 0 | 985 | 3536 | 27.85633 | 0.4608 | 0 | 1464 | 0 | 0.0000000 | 0.1079 | 0 | 364 | 24.8633880 | 0.9300 | 1 | 0 | 1330 | 0.0000000 | 0.09796 | 0 | 17 | 1330 | 1.278196 | 0.1463 | 0 | 0 | 3536 | 0.000000 | 0.1831 | 0 | 2.96830 | 0.6434 | 2 | 2.71239 | 0.6156 | 2 | 0.4608 | 0.4569 | 0 | 1.46526 | 0.08976 | 1 | 7.60675 | 0.4440 | 5 | NA | NA |
We will add in our 2020 data:
svi_divisional_lihtc20 <- left_join(svi_divisional_lihtc10, lihtc_projects20, join_by("GEOID_2010_trt" == "fips2010"))
svi_divisional_lihtc20 %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt | FIPS_st | FIPS_county | FIPS_tract | state | state_name | county | region_number | region | division_number | division | E_TOTPOP_10 | E_HU_10 | E_HH_10 | E_POV150_10 | ET_POVSTATUS_10 | EP_POV150_10 | EPL_POV150_10 | F_POV150_10 | E_UNEMP_10 | ET_EMPSTATUS_10 | EP_UNEMP_10 | EPL_UNEMP_10 | F_UNEMP_10 | E_HBURD_OWN_10 | ET_HOUSINGCOST_OWN_10 | EP_HBURD_OWN_10 | EPL_HBURD_OWN_10 | F_HBURD_OWN_10 | E_HBURD_RENT_10 | ET_HOUSINGCOST_RENT_10 | EP_HBURD_RENT_10 | EPL_HBURD_RENT_10 | F_HBURD_RENT_10 | E_HBURD_10 | ET_HOUSINGCOST_10 | EP_HBURD_10 | EPL_HBURD_10 | F_HBURD_10 | E_NOHSDP_10 | ET_EDSTATUS_10 | EP_NOHSDP_10 | EPL_NOHSDP_10 | F_NOHSDP_10 | E_UNINSUR_12 | ET_INSURSTATUS_12 | EP_UNINSUR_12 | EPL_UNINSUR_12 | F_UNINSUR_12 | E_AGE65_10 | EP_AGE65_10 | EPL_AGE65_10 | F_AGE65_10 | E_AGE17_10 | EP_AGE17_10 | EPL_AGE17_10 | F_AGE17_10 | E_DISABL_12 | ET_DISABLSTATUS_12 | EP_DISABL_12 | EPL_DISABL_12 | F_DISABL_12 | E_SNGPNT_10 | ET_FAMILIES_10 | EP_SNGPNT_10 | EPL_SNGPNT_10 | F_SNGPNT_10 | E_LIMENG_10 | ET_POPAGE5UP_10 | EP_LIMENG_10 | EPL_LIMENG_10 | F_LIMENG_10 | E_MINRTY_10 | ET_POPETHRACE_10 | EP_MINRTY_10 | EPL_MINRTY_10 | F_MINRTY_10 | E_STRHU_10 | E_MUNIT_10 | EP_MUNIT_10 | EPL_MUNIT_10 | F_MUNIT_10 | E_MOBILE_10 | EP_MOBILE_10 | EPL_MOBILE_10 | F_MOBILE_10 | E_CROWD_10 | ET_OCCUPANTS_10 | EP_CROWD_10 | EPL_CROWD_10 | F_CROWD_10 | E_NOVEH_10 | ET_KNOWNVEH_10 | EP_NOVEH_10 | EPL_NOVEH_10 | F_NOVEH_10 | E_GROUPQ_10 | ET_HHTYPE_10 | EP_GROUPQ_10 | EPL_GROUPQ_10 | F_GROUPQ_10 | SPL_THEME1_10 | RPL_THEME1_10 | F_THEME1_10 | SPL_THEME2_10 | RPL_THEME2_10 | F_THEME2_10 | SPL_THEME3_10 | RPL_THEME3_10 | F_THEME3_10 | SPL_THEME4_10 | RPL_THEME4_10 | F_THEME4_10 | SPL_THEMES_10 | RPL_THEMES_10 | F_TOTAL_10 | E_TOTPOP_20 | E_HU_20 | E_HH_20 | E_POV150_20 | ET_POVSTATUS_20 | EP_POV150_20 | EPL_POV150_20 | F_POV150_20 | E_UNEMP_20 | ET_EMPSTATUS_20 | EP_UNEMP_20 | EPL_UNEMP_20 | F_UNEMP_20 | E_HBURD_OWN_20 | ET_HOUSINGCOST_OWN_20 | EP_HBURD_OWN_20 | EPL_HBURD_OWN_20 | F_HBURD_OWN_20 | E_HBURD_RENT_20 | ET_HOUSINGCOST_RENT_20 | EP_HBURD_RENT_20 | EPL_HBURD_RENT_20 | F_HBURD_RENT_20 | E_HBURD_20 | ET_HOUSINGCOST_20 | EP_HBURD_20 | EPL_HBURD_20 | F_HBURD_20 | E_NOHSDP_20 | ET_EDSTATUS_20 | EP_NOHSDP_20 | EPL_NOHSDP_20 | F_NOHSDP_20 | E_UNINSUR_20 | ET_INSURSTATUS_20 | EP_UNINSUR_20 | EPL_UNINSUR_20 | F_UNINSUR_20 | E_AGE65_20 | EP_AGE65_20 | EPL_AGE65_20 | F_AGE65_20 | E_AGE17_20 | EP_AGE17_20 | EPL_AGE17_20 | F_AGE17_20 | E_DISABL_20 | ET_DISABLSTATUS_20 | EP_DISABL_20 | EPL_DISABL_20 | F_DISABL_20 | E_SNGPNT_20 | ET_FAMILIES_20 | EP_SNGPNT_20 | EPL_SNGPNT_20 | F_SNGPNT_20 | E_LIMENG_20 | ET_POPAGE5UP_20 | EP_LIMENG_20 | EPL_LIMENG_20 | F_LIMENG_20 | E_MINRTY_20 | ET_POPETHRACE_20 | EP_MINRTY_20 | EPL_MINRTY_20 | F_MINRTY_20 | E_STRHU_20 | E_MUNIT_20 | EP_MUNIT_20 | EPL_MUNIT_20 | F_MUNIT_20 | E_MOBILE_20 | EP_MOBILE_20 | EPL_MOBILE_20 | F_MOBILE_20 | E_CROWD_20 | ET_OCCUPANTS_20 | EP_CROWD_20 | EPL_CROWD_20 | F_CROWD_20 | E_NOVEH_20 | ET_KNOWNVEH_20 | EP_NOVEH_20 | EPL_NOVEH_20 | F_NOVEH_20 | E_GROUPQ_20 | ET_HHTYPE_20 | EP_GROUPQ_20 | EPL_GROUPQ_20 | F_GROUPQ_20 | SPL_THEME1_20 | RPL_THEME1_20 | F_THEME1_20 | SPL_THEME2_20 | RPL_THEME2_20 | F_THEME2_20 | SPL_THEME3_20 | RPL_THEME3_20 | F_THEME3_20 | SPL_THEME4_20 | RPL_THEME4_20 | F_THEME4_20 | SPL_THEMES_20 | RPL_THEMES_20 | F_TOTAL_20 | pre10_lihtc_project_cnt | pre10_lihtc_project_dollars | post10_lihtc_project_cnt | post10_lihtc_project_dollars |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
34001000100 | 34 | 001 | 000100 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 2907 | 1088 | 983 | 1127 | 2907 | 38.76849 | 0.8482 | 1 | 144 | 1433 | 10.048849 | 0.7544 | 1 | 280 | 435 | 64.36782 | 0.9529 | 1 | 204 | 548 | 37.22628 | 0.2998 | 0 | 484 | 983 | 49.23703 | 0.7813 | 1 | 468 | 1759 | 26.60603 | 0.8634 | 1 | 532 | 2543 | 20.92017 | 0.8978 | 1 | 250 | 8.599931 | 0.1777 | 0 | 944 | 32.47334 | 0.94170 | 1 | 186 | 1851 | 10.04862 | 0.2706 | 0 | 266 | 678 | 39.233038 | 0.8981 | 1 | 177 | 2611 | 6.779012 | 0.7778 | 1 | 1928 | 2907 | 66.32267 | 0.7743 | 1 | 1088 | 113 | 10.386029 | 0.6229 | 0 | 9 | 0.8272059 | 0.7223 | 0 | 80 | 983 | 8.138352 | 0.8657 | 1 | 265 | 983 | 26.95829 | 0.7354 | 0 | 0 | 2907 | 0.000000 | 0.3512 | 0 | 4.1451 | 0.8935 | 5 | 3.06590 | 0.7944 | 3 | 0.7743 | 0.7667 | 1 | 3.2975 | 0.8414 | 1 | 11.28280 | 0.8862 | 10 | 2157 | 941 | 784 | 1182 | 2157 | 54.79833 | 0.9571 | 1 | 242 | 1058 | 22.873346 | 0.9922 | 1 | 215 | 342 | 62.86550 | 0.9780 | 1 | 316 | 442 | 71.49321 | 0.9481 | 1 | 531 | 784 | 67.72959 | 0.9893 | 1 | 396 | 1274 | 31.08320 | 0.9497 | 1 | 266 | 2157 | 12.331943 | 0.9041 | 1 | 185 | 8.576727 | 0.09430 | 0 | 552 | 25.59110 | 0.8128 | 1 | 297 | 1605 | 18.504673 | 0.74880 | 0 | 83 | 510 | 16.27451 | 0.6090 | 0 | 251 | 2020 | 12.425743 | 0.8710 | 1 | 1852 | 2157 | 85.85999 | 0.8476 | 1 | 941 | 118 | 12.5398512 | 0.6385 | 0 | 0 | 0.0000000 | 0.3216 | 0 | 67 | 784 | 8.545918 | 0.8657 | 1 | 212 | 784 | 27.04082 | 0.7502 | 1 | 0 | 2157 | 0.0000000 | 0.1517 | 0 | 4.7924 | 0.9850 | 5 | 3.13590 | 0.8217 | 2 | 0.8476 | 0.8400 | 1 | 2.7277 | 0.6085 | 2 | 11.50360 | 0.9104 | 10 | NA | NA | NA | NA |
34001000200 | 34 | 001 | 000200 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 3189 | 2217 | 1473 | 519 | 3189 | 16.27469 | 0.4806 | 0 | 109 | 1558 | 6.996149 | 0.5179 | 0 | 573 | 955 | 60.00000 | 0.9323 | 1 | 199 | 518 | 38.41699 | 0.3261 | 0 | 772 | 1473 | 52.41005 | 0.8418 | 1 | 405 | 2579 | 15.70376 | 0.6491 | 0 | 484 | 3547 | 13.64533 | 0.7154 | 0 | 847 | 26.560050 | 0.9629 | 1 | 436 | 13.67200 | 0.08181 | 0 | 608 | 3005 | 20.23295 | 0.8466 | 1 | 42 | 857 | 4.900817 | 0.1204 | 0 | 422 | 3072 | 13.736979 | 0.8799 | 1 | 1792 | 3189 | 56.19316 | 0.7390 | 0 | 2217 | 901 | 40.640505 | 0.8693 | 1 | 0 | 0.0000000 | 0.3251 | 0 | 48 | 1473 | 3.258656 | 0.7064 | 0 | 250 | 1473 | 16.97217 | 0.6444 | 0 | 0 | 3189 | 0.000000 | 0.3512 | 0 | 3.2048 | 0.6963 | 1 | 2.89161 | 0.7231 | 3 | 0.7390 | 0.7317 | 0 | 2.8964 | 0.6887 | 1 | 9.73181 | 0.7340 | 5 | 3510 | 2046 | 1353 | 1021 | 3510 | 29.08832 | 0.7682 | 1 | 121 | 1852 | 6.533477 | 0.6717 | 0 | 343 | 696 | 49.28161 | 0.9273 | 1 | 416 | 657 | 63.31811 | 0.8696 | 1 | 759 | 1353 | 56.09756 | 0.9321 | 1 | 553 | 2338 | 23.65269 | 0.8871 | 1 | 354 | 3510 | 10.085470 | 0.8530 | 1 | 643 | 18.319088 | 0.60310 | 0 | 1002 | 28.54701 | 0.9055 | 1 | 450 | 2508 | 17.942584 | 0.72330 | 0 | 237 | 786 | 30.15267 | 0.8539 | 1 | 534 | 3375 | 15.822222 | 0.9062 | 1 | 2534 | 3510 | 72.19373 | 0.7818 | 1 | 2046 | 906 | 44.2815249 | 0.8690 | 1 | 0 | 0.0000000 | 0.3216 | 0 | 119 | 1353 | 8.795270 | 0.8711 | 1 | 324 | 1353 | 23.94678 | 0.7255 | 0 | 0 | 3510 | 0.0000000 | 0.1517 | 0 | 4.1121 | 0.9003 | 4 | 3.99200 | 0.9781 | 3 | 0.7818 | 0.7747 | 1 | 2.9389 | 0.7011 | 2 | 11.82480 | 0.9310 | 10 | NA | NA | NA | NA |
34001000300 | 34 | 001 | 000300 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 3997 | 1823 | 1357 | 1401 | 3968 | 35.30746 | 0.8164 | 1 | 382 | 2238 | 17.068811 | 0.9376 | 1 | 176 | 329 | 53.49544 | 0.8855 | 1 | 604 | 1028 | 58.75486 | 0.7947 | 1 | 780 | 1357 | 57.47973 | 0.9165 | 1 | 920 | 2677 | 34.36683 | 0.9346 | 1 | 1351 | 4149 | 32.56206 | 0.9811 | 1 | 314 | 7.855892 | 0.1437 | 0 | 937 | 23.44258 | 0.55900 | 0 | 319 | 3054 | 10.44532 | 0.3000 | 0 | 187 | 782 | 23.913044 | 0.7498 | 0 | 1080 | 3671 | 29.419777 | 0.9742 | 1 | 3357 | 3997 | 83.98799 | 0.8419 | 1 | 1823 | 363 | 19.912233 | 0.7535 | 1 | 0 | 0.0000000 | 0.3251 | 0 | 150 | 1357 | 11.053795 | 0.9136 | 1 | 651 | 1357 | 47.97347 | 0.8585 | 1 | 0 | 3997 | 0.000000 | 0.3512 | 0 | 4.5862 | 0.9691 | 5 | 2.72670 | 0.6360 | 1 | 0.8419 | 0.8336 | 1 | 3.2019 | 0.8054 | 3 | 11.35670 | 0.8920 | 10 | 3801 | 1640 | 1226 | 1857 | 3801 | 48.85556 | 0.9333 | 1 | 226 | 1800 | 12.555556 | 0.9267 | 1 | 111 | 280 | 39.64286 | 0.8339 | 1 | 608 | 946 | 64.27061 | 0.8842 | 1 | 719 | 1226 | 58.64600 | 0.9528 | 1 | 650 | 2275 | 28.57143 | 0.9337 | 1 | 1027 | 3801 | 27.019206 | 0.9914 | 1 | 380 | 9.997369 | 0.14040 | 0 | 1223 | 32.17574 | 0.9607 | 1 | 219 | 2578 | 8.494957 | 0.15680 | 0 | 268 | 909 | 29.48295 | 0.8456 | 1 | 940 | 3400 | 27.647059 | 0.9728 | 1 | 3318 | 3801 | 87.29282 | 0.8579 | 1 | 1640 | 262 | 15.9756098 | 0.6917 | 0 | 0 | 0.0000000 | 0.3216 | 0 | 124 | 1226 | 10.114192 | 0.8955 | 1 | 477 | 1226 | 38.90701 | 0.8258 | 1 | 0 | 3801 | 0.0000000 | 0.1517 | 0 | 4.7379 | 0.9829 | 5 | 3.07630 | 0.8013 | 3 | 0.8579 | 0.8501 | 1 | 2.8863 | 0.6781 | 2 | 11.55840 | 0.9150 | 11 | NA | NA | NA | NA |
34001000400 | 34 | 001 | 000400 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 2902 | 2683 | 1401 | 1172 | 2902 | 40.38594 | 0.8615 | 1 | 190 | 1389 | 13.678906 | 0.8811 | 1 | 364 | 707 | 51.48515 | 0.8627 | 1 | 507 | 694 | 73.05476 | 0.9503 | 1 | 871 | 1401 | 62.16988 | 0.9572 | 1 | 481 | 1981 | 24.28067 | 0.8339 | 1 | 674 | 3204 | 21.03620 | 0.8998 | 1 | 434 | 14.955203 | 0.6083 | 0 | 596 | 20.53756 | 0.33980 | 0 | 426 | 2607 | 16.34062 | 0.6886 | 0 | 111 | 652 | 17.024540 | 0.6204 | 0 | 215 | 2736 | 7.858187 | 0.8008 | 1 | 1792 | 2902 | 61.75052 | 0.7584 | 1 | 2683 | 2049 | 76.369735 | 0.9401 | 1 | 0 | 0.0000000 | 0.3251 | 0 | 69 | 1401 | 4.925053 | 0.7847 | 1 | 511 | 1401 | 36.47395 | 0.7992 | 1 | 72 | 2902 | 2.481048 | 0.8114 | 1 | 4.4335 | 0.9468 | 5 | 3.05790 | 0.7908 | 1 | 0.7584 | 0.7510 | 1 | 3.6605 | 0.9391 | 4 | 11.91030 | 0.9339 | 11 | 3178 | 2264 | 1390 | 1508 | 3176 | 47.48111 | 0.9246 | 1 | 172 | 1804 | 9.534368 | 0.8460 | 1 | 205 | 468 | 43.80342 | 0.8858 | 1 | 622 | 922 | 67.46204 | 0.9192 | 1 | 827 | 1390 | 59.49640 | 0.9587 | 1 | 364 | 2076 | 17.53372 | 0.8013 | 1 | 476 | 3178 | 14.977974 | 0.9390 | 1 | 483 | 15.198238 | 0.41220 | 0 | 539 | 16.96035 | 0.2484 | 0 | 319 | 2639 | 12.087912 | 0.38790 | 0 | 101 | 565 | 17.87611 | 0.6539 | 0 | 583 | 3022 | 19.291860 | 0.9349 | 1 | 2186 | 3178 | 68.78540 | 0.7658 | 1 | 2264 | 1609 | 71.0689046 | 0.9266 | 1 | 15 | 0.6625442 | 0.7078 | 0 | 226 | 1390 | 16.258993 | 0.9567 | 1 | 599 | 1390 | 43.09353 | 0.8474 | 1 | 20 | 3178 | 0.6293266 | 0.6292 | 0 | 4.4696 | 0.9558 | 5 | 2.63730 | 0.5864 | 1 | 0.7658 | 0.7588 | 1 | 4.0677 | 0.9762 | 3 | 11.94040 | 0.9387 | 10 | NA | NA | NA | NA |
34001000500 | 34 | 001 | 000500 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 3483 | 1241 | 1027 | 1938 | 3483 | 55.64169 | 0.9533 | 1 | 124 | 1630 | 7.607362 | 0.5830 | 0 | 227 | 446 | 50.89686 | 0.8549 | 1 | 478 | 581 | 82.27194 | 0.9799 | 1 | 705 | 1027 | 68.64654 | 0.9863 | 1 | 733 | 2077 | 35.29129 | 0.9396 | 1 | 727 | 3258 | 22.31430 | 0.9149 | 1 | 377 | 10.824002 | 0.3081 | 0 | 1055 | 30.28998 | 0.90140 | 1 | 268 | 2401 | 11.16202 | 0.3549 | 0 | 209 | 763 | 27.391874 | 0.7940 | 1 | 911 | 3077 | 29.606760 | 0.9746 | 1 | 3036 | 3483 | 87.16624 | 0.8550 | 1 | 1241 | 52 | 4.190169 | 0.4505 | 0 | 4 | 0.3223207 | 0.6567 | 0 | 113 | 1027 | 11.002921 | 0.9128 | 1 | 422 | 1027 | 41.09056 | 0.8250 | 1 | 0 | 3483 | 0.000000 | 0.3512 | 0 | 4.3771 | 0.9379 | 4 | 3.33300 | 0.8766 | 3 | 0.8550 | 0.8467 | 1 | 3.1962 | 0.8026 | 2 | 11.76130 | 0.9229 | 10 | 3385 | 1185 | 945 | 1682 | 3364 | 50.00000 | 0.9391 | 1 | 72 | 1577 | 4.565631 | 0.4586 | 0 | 185 | 468 | 39.52991 | 0.8332 | 1 | 362 | 477 | 75.89099 | 0.9703 | 1 | 547 | 945 | 57.88360 | 0.9477 | 1 | 592 | 1983 | 29.85376 | 0.9422 | 1 | 738 | 3385 | 21.802068 | 0.9817 | 1 | 240 | 7.090103 | 0.05988 | 0 | 1129 | 33.35303 | 0.9689 | 1 | 135 | 2256 | 5.984043 | 0.04817 | 0 | 110 | 717 | 15.34170 | 0.5822 | 0 | 721 | 3076 | 23.439532 | 0.9569 | 1 | 3029 | 3385 | 89.48301 | 0.8727 | 1 | 1185 | 9 | 0.7594937 | 0.2382 | 0 | 0 | 0.0000000 | 0.3216 | 0 | 103 | 945 | 10.899471 | 0.9072 | 1 | 263 | 945 | 27.83069 | 0.7560 | 1 | 0 | 3385 | 0.0000000 | 0.1517 | 0 | 4.2693 | 0.9283 | 4 | 2.61605 | 0.5709 | 2 | 0.8727 | 0.8648 | 1 | 2.3747 | 0.4357 | 2 | 10.13275 | 0.7921 | 9 | NA | NA | NA | NA |
34001001100 | 34 | 001 | 001100 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 2204 | 1204 | 1204 | 1185 | 2204 | 53.76588 | 0.9457 | 1 | 219 | 927 | 23.624596 | 0.9830 | 1 | 97 | 172 | 56.39535 | 0.9094 | 1 | 462 | 1032 | 44.76744 | 0.4746 | 0 | 559 | 1204 | 46.42857 | 0.7197 | 0 | 346 | 1440 | 24.02778 | 0.8306 | 1 | 469 | 1942 | 24.15036 | 0.9360 | 1 | 363 | 16.470054 | 0.7020 | 0 | 578 | 26.22505 | 0.74410 | 0 | 442 | 1558 | 28.36970 | 0.9675 | 1 | 247 | 396 | 62.373737 | 0.9898 | 1 | 104 | 2051 | 5.070697 | 0.7260 | 0 | 2118 | 2204 | 96.09800 | 0.9204 | 1 | 1204 | 570 | 47.342193 | 0.8858 | 1 | 0 | 0.0000000 | 0.3251 | 0 | 14 | 1204 | 1.162791 | 0.4877 | 0 | 817 | 1204 | 67.85714 | 0.9413 | 1 | 0 | 2204 | 0.000000 | 0.3512 | 0 | 4.4150 | 0.9451 | 4 | 4.12940 | 0.9805 | 2 | 0.9204 | 0.9114 | 1 | 2.9911 | 0.7243 | 2 | 12.45590 | 0.9597 | 9 | 1950 | 1267 | 1096 | 1131 | 1950 | 58.00000 | 0.9678 | 1 | 66 | 706 | 9.348442 | 0.8395 | 1 | 42 | 101 | 41.58416 | 0.8612 | 1 | 309 | 995 | 31.05528 | 0.1959 | 0 | 351 | 1096 | 32.02555 | 0.4782 | 0 | 510 | 1379 | 36.98332 | 0.9763 | 1 | 155 | 1950 | 7.948718 | 0.7660 | 1 | 392 | 20.102564 | 0.69880 | 0 | 447 | 22.92308 | 0.6712 | 0 | 570 | 1503 | 37.924152 | 0.99200 | 1 | 143 | 374 | 38.23529 | 0.9167 | 1 | 109 | 1841 | 5.920695 | 0.7464 | 0 | 1909 | 1950 | 97.89744 | 0.9529 | 1 | 1267 | 479 | 37.8058406 | 0.8464 | 1 | 0 | 0.0000000 | 0.3216 | 0 | 33 | 1096 | 3.010949 | 0.6446 | 0 | 743 | 1096 | 67.79197 | 0.9414 | 1 | 0 | 1950 | 0.0000000 | 0.1517 | 0 | 4.0278 | 0.8848 | 4 | 4.02510 | 0.9798 | 2 | 0.9529 | 0.9442 | 1 | 2.9057 | 0.6869 | 2 | 11.91150 | 0.9365 | 9 | 1 | 0 | 1 | 1290441 |
svi_national_lihtc20 <- left_join(svi_national_lihtc10, lihtc_projects20, join_by("GEOID_2010_trt" == "fips2010"))
svi_national_lihtc20 %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt | FIPS_st | FIPS_county | FIPS_tract | state | state_name | county | region_number | region | division_number | division | E_TOTPOP_10 | E_HU_10 | E_HH_10 | E_POV150_10 | ET_POVSTATUS_10 | EP_POV150_10 | EPL_POV150_10 | F_POV150_10 | E_UNEMP_10 | ET_EMPSTATUS_10 | EP_UNEMP_10 | EPL_UNEMP_10 | F_UNEMP_10 | E_HBURD_OWN_10 | ET_HOUSINGCOST_OWN_10 | EP_HBURD_OWN_10 | EPL_HBURD_OWN_10 | F_HBURD_OWN_10 | E_HBURD_RENT_10 | ET_HOUSINGCOST_RENT_10 | EP_HBURD_RENT_10 | EPL_HBURD_RENT_10 | F_HBURD_RENT_10 | E_HBURD_10 | ET_HOUSINGCOST_10 | EP_HBURD_10 | EPL_HBURD_10 | F_HBURD_10 | E_NOHSDP_10 | ET_EDSTATUS_10 | EP_NOHSDP_10 | EPL_NOHSDP_10 | F_NOHSDP_10 | E_UNINSUR_12 | ET_INSURSTATUS_12 | EP_UNINSUR_12 | EPL_UNINSUR_12 | F_UNINSUR_12 | E_AGE65_10 | EP_AGE65_10 | EPL_AGE65_10 | F_AGE65_10 | E_AGE17_10 | EP_AGE17_10 | EPL_AGE17_10 | F_AGE17_10 | E_DISABL_12 | ET_DISABLSTATUS_12 | EP_DISABL_12 | EPL_DISABL_12 | F_DISABL_12 | E_SNGPNT_10 | ET_FAMILIES_10 | EP_SNGPNT_10 | EPL_SNGPNT_10 | F_SNGPNT_10 | E_LIMENG_10 | ET_POPAGE5UP_10 | EP_LIMENG_10 | EPL_LIMENG_10 | F_LIMENG_10 | E_MINRTY_10 | ET_POPETHRACE_10 | EP_MINRTY_10 | EPL_MINRTY_10 | F_MINRTY_10 | E_STRHU_10 | E_MUNIT_10 | EP_MUNIT_10 | EPL_MUNIT_10 | F_MUNIT_10 | E_MOBILE_10 | EP_MOBILE_10 | EPL_MOBILE_10 | F_MOBILE_10 | E_CROWD_10 | ET_OCCUPANTS_10 | EP_CROWD_10 | EPL_CROWD_10 | F_CROWD_10 | E_NOVEH_10 | ET_KNOWNVEH_10 | EP_NOVEH_10 | EPL_NOVEH_10 | F_NOVEH_10 | E_GROUPQ_10 | ET_HHTYPE_10 | EP_GROUPQ_10 | EPL_GROUPQ_10 | F_GROUPQ_10 | SPL_THEME1_10 | RPL_THEME1_10 | F_THEME1_10 | SPL_THEME2_10 | RPL_THEME2_10 | F_THEME2_10 | SPL_THEME3_10 | RPL_THEME3_10 | F_THEME3_10 | SPL_THEME4_10 | RPL_THEME4_10 | F_THEME4_10 | SPL_THEMES_10 | RPL_THEMES_10 | F_TOTAL_10 | E_TOTPOP_20 | E_HU_20 | E_HH_20 | E_POV150_20 | ET_POVSTATUS_20 | EP_POV150_20 | EPL_POV150_20 | F_POV150_20 | E_UNEMP_20 | ET_EMPSTATUS_20 | EP_UNEMP_20 | EPL_UNEMP_20 | F_UNEMP_20 | E_HBURD_OWN_20 | ET_HOUSINGCOST_OWN_20 | EP_HBURD_OWN_20 | EPL_HBURD_OWN_20 | F_HBURD_OWN_20 | E_HBURD_RENT_20 | ET_HOUSINGCOST_RENT_20 | EP_HBURD_RENT_20 | EPL_HBURD_RENT_20 | F_HBURD_RENT_20 | E_HBURD_20 | ET_HOUSINGCOST_20 | EP_HBURD_20 | EPL_HBURD_20 | F_HBURD_20 | E_NOHSDP_20 | ET_EDSTATUS_20 | EP_NOHSDP_20 | EPL_NOHSDP_20 | F_NOHSDP_20 | E_UNINSUR_20 | ET_INSURSTATUS_20 | EP_UNINSUR_20 | EPL_UNINSUR_20 | F_UNINSUR_20 | E_AGE65_20 | EP_AGE65_20 | EPL_AGE65_20 | F_AGE65_20 | E_AGE17_20 | EP_AGE17_20 | EPL_AGE17_20 | F_AGE17_20 | E_DISABL_20 | ET_DISABLSTATUS_20 | EP_DISABL_20 | EPL_DISABL_20 | F_DISABL_20 | E_SNGPNT_20 | ET_FAMILIES_20 | EP_SNGPNT_20 | EPL_SNGPNT_20 | F_SNGPNT_20 | E_LIMENG_20 | ET_POPAGE5UP_20 | EP_LIMENG_20 | EPL_LIMENG_20 | F_LIMENG_20 | E_MINRTY_20 | ET_POPETHRACE_20 | EP_MINRTY_20 | EPL_MINRTY_20 | F_MINRTY_20 | E_STRHU_20 | E_MUNIT_20 | EP_MUNIT_20 | EPL_MUNIT_20 | F_MUNIT_20 | E_MOBILE_20 | EP_MOBILE_20 | EPL_MOBILE_20 | F_MOBILE_20 | E_CROWD_20 | ET_OCCUPANTS_20 | EP_CROWD_20 | EPL_CROWD_20 | F_CROWD_20 | E_NOVEH_20 | ET_KNOWNVEH_20 | EP_NOVEH_20 | EPL_NOVEH_20 | F_NOVEH_20 | E_GROUPQ_20 | ET_HHTYPE_20 | EP_GROUPQ_20 | EPL_GROUPQ_20 | F_GROUPQ_20 | SPL_THEME1_20 | RPL_THEME1_20 | F_THEME1_20 | SPL_THEME2_20 | RPL_THEME2_20 | F_THEME2_20 | SPL_THEME3_20 | RPL_THEME3_20 | F_THEME3_20 | SPL_THEME4_20 | RPL_THEME4_20 | F_THEME4_20 | SPL_THEMES_20 | RPL_THEMES_20 | F_TOTAL_20 | pre10_lihtc_project_cnt | pre10_lihtc_project_dollars | post10_lihtc_project_cnt | post10_lihtc_project_dollars |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
01001020100 | 01 | 001 | 020100 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 1809 | 771 | 696 | 297 | 1809 | 16.41791 | 0.3871 | 0 | 36 | 889 | 4.049494 | 0.1790 | 0 | 127 | 598 | 21.23746 | 0.20770 | 0 | 47 | 98 | 47.95918 | 0.5767 | 0 | 174 | 696 | 25.00000 | 0.18790 | 0 | 196 | 1242 | 15.780998 | 0.6093 | 0 | 186 | 1759 | 10.574190 | 0.3790 | 0 | 222 | 12.271973 | 0.4876 | 0 | 445 | 24.59923 | 0.5473 | 0 | 298 | 1335 | 22.32210 | 0.8454 | 1 | 27 | 545 | 4.954128 | 0.09275 | 0 | 36 | 1705 | 2.1114370 | 0.59040 | 0 | 385 | 1809 | 21.282477 | 0.4524 | 0 | 771 | 0 | 0.0000000 | 0.1224 | 0 | 92 | 11.9325551 | 0.8005 | 1 | 0 | 696 | 0.0000000 | 0.1238 | 0 | 50 | 696 | 7.183908 | 0.6134 | 0 | 0 | 1809 | 0 | 0.364 | 0 | 1.74230 | 0.28200 | 0 | 2.56345 | 0.5296 | 1 | 0.4524 | 0.4482 | 0 | 2.0241 | 0.2519 | 1 | 6.78225 | 0.3278 | 2 | 1941 | 710 | 693 | 352 | 1941 | 18.13498 | 0.4630 | 0 | 18 | 852 | 2.112676 | 0.15070 | 0 | 81 | 507 | 15.976331 | 0.26320 | 0 | 63 | 186 | 33.87097 | 0.2913 | 0 | 144 | 693 | 20.77922 | 0.2230 | 0 | 187 | 1309 | 14.285714 | 0.6928 | 0 | 187 | 1941 | 9.634209 | 0.6617 | 0 | 295 | 15.19835 | 0.4601 | 0 | 415 | 21.38073 | 0.4681 | 0 | 391 | 1526 | 25.62254 | 0.9011 | 1 | 58 | 555 | 10.45045 | 0.3451 | 0 | 0 | 1843 | 0.0000000 | 0.09479 | 0 | 437 | 1941 | 22.51417 | 0.3902 | 0 | 710 | 0 | 0.0000000 | 0.1079 | 0 | 88 | 12.3943662 | 0.8263 | 1 | 0 | 693 | 0.0000000 | 0.09796 | 0 | 10 | 693 | 1.443001 | 0.1643 | 0 | 0 | 1941 | 0.000000 | 0.1831 | 0 | 2.19120 | 0.4084 | 0 | 2.26919 | 0.3503 | 1 | 0.3902 | 0.3869 | 0 | 1.37956 | 0.07216 | 1 | 6.23015 | 0.2314 | 2 | NA | NA | NA | NA |
01001020200 | 01 | 001 | 020200 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 2020 | 816 | 730 | 495 | 1992 | 24.84940 | 0.5954 | 0 | 68 | 834 | 8.153477 | 0.5754 | 0 | 49 | 439 | 11.16173 | 0.02067 | 0 | 105 | 291 | 36.08247 | 0.3019 | 0 | 154 | 730 | 21.09589 | 0.09312 | 0 | 339 | 1265 | 26.798419 | 0.8392 | 1 | 313 | 2012 | 15.556660 | 0.6000 | 0 | 204 | 10.099010 | 0.3419 | 0 | 597 | 29.55446 | 0.8192 | 1 | 359 | 1515 | 23.69637 | 0.8791 | 1 | 132 | 456 | 28.947368 | 0.83510 | 1 | 15 | 1890 | 0.7936508 | 0.40130 | 0 | 1243 | 2020 | 61.534653 | 0.7781 | 1 | 816 | 0 | 0.0000000 | 0.1224 | 0 | 34 | 4.1666667 | 0.6664 | 0 | 13 | 730 | 1.7808219 | 0.5406 | 0 | 115 | 730 | 15.753425 | 0.8382 | 1 | 0 | 2020 | 0 | 0.364 | 0 | 2.70312 | 0.56650 | 1 | 3.27660 | 0.8614 | 3 | 0.7781 | 0.7709 | 1 | 2.5316 | 0.5047 | 1 | 9.28942 | 0.6832 | 6 | 1757 | 720 | 573 | 384 | 1511 | 25.41363 | 0.6427 | 0 | 29 | 717 | 4.044630 | 0.41320 | 0 | 33 | 392 | 8.418367 | 0.03542 | 0 | 116 | 181 | 64.08840 | 0.9086 | 1 | 149 | 573 | 26.00349 | 0.4041 | 0 | 139 | 1313 | 10.586443 | 0.5601 | 0 | 91 | 1533 | 5.936073 | 0.4343 | 0 | 284 | 16.16392 | 0.5169 | 0 | 325 | 18.49744 | 0.2851 | 0 | 164 | 1208 | 13.57616 | 0.4127 | 0 | 42 | 359 | 11.69916 | 0.3998 | 0 | 0 | 1651 | 0.0000000 | 0.09479 | 0 | 1116 | 1757 | 63.51736 | 0.7591 | 1 | 720 | 3 | 0.4166667 | 0.2470 | 0 | 5 | 0.6944444 | 0.5106 | 0 | 9 | 573 | 1.5706806 | 0.46880 | 0 | 57 | 573 | 9.947644 | 0.7317 | 0 | 212 | 1757 | 12.066022 | 0.9549 | 1 | 2.45440 | 0.4888 | 0 | 1.70929 | 0.1025 | 0 | 0.7591 | 0.7527 | 1 | 2.91300 | 0.68620 | 1 | 7.83579 | 0.4802 | 2 | NA | NA | NA | NA |
01001020300 | 01 | 001 | 020300 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 3543 | 1403 | 1287 | 656 | 3533 | 18.56779 | 0.4443 | 0 | 93 | 1552 | 5.992268 | 0.3724 | 0 | 273 | 957 | 28.52665 | 0.45780 | 0 | 178 | 330 | 53.93939 | 0.7152 | 0 | 451 | 1287 | 35.04274 | 0.49930 | 0 | 346 | 2260 | 15.309734 | 0.5950 | 0 | 252 | 3102 | 8.123791 | 0.2596 | 0 | 487 | 13.745413 | 0.5868 | 0 | 998 | 28.16822 | 0.7606 | 1 | 371 | 2224 | 16.68165 | 0.6266 | 0 | 126 | 913 | 13.800657 | 0.46350 | 0 | 0 | 3365 | 0.0000000 | 0.09298 | 0 | 637 | 3543 | 17.979114 | 0.4049 | 0 | 1403 | 10 | 0.7127584 | 0.3015 | 0 | 2 | 0.1425517 | 0.4407 | 0 | 0 | 1287 | 0.0000000 | 0.1238 | 0 | 101 | 1287 | 7.847708 | 0.6443 | 0 | 0 | 3543 | 0 | 0.364 | 0 | 2.17060 | 0.41010 | 0 | 2.53048 | 0.5116 | 1 | 0.4049 | 0.4011 | 0 | 1.8743 | 0.1942 | 0 | 6.98028 | 0.3576 | 1 | 3694 | 1464 | 1351 | 842 | 3694 | 22.79372 | 0.5833 | 0 | 53 | 1994 | 2.657974 | 0.22050 | 0 | 117 | 967 | 12.099276 | 0.11370 | 0 | 147 | 384 | 38.28125 | 0.3856 | 0 | 264 | 1351 | 19.54108 | 0.1827 | 0 | 317 | 2477 | 12.797739 | 0.6460 | 0 | 127 | 3673 | 3.457664 | 0.2308 | 0 | 464 | 12.56091 | 0.3088 | 0 | 929 | 25.14889 | 0.7080 | 0 | 473 | 2744 | 17.23761 | 0.6211 | 0 | 263 | 975 | 26.97436 | 0.8234 | 1 | 128 | 3586 | 3.5694367 | 0.70770 | 0 | 1331 | 3694 | 36.03140 | 0.5515 | 0 | 1464 | 26 | 1.7759563 | 0.3675 | 0 | 14 | 0.9562842 | 0.5389 | 0 | 35 | 1351 | 2.5906736 | 0.60550 | 0 | 42 | 1351 | 3.108808 | 0.3415 | 0 | 0 | 3694 | 0.000000 | 0.1831 | 0 | 1.86330 | 0.3063 | 0 | 3.16900 | 0.8380 | 1 | 0.5515 | 0.5468 | 0 | 2.03650 | 0.26830 | 0 | 7.62030 | 0.4460 | 1 | 2 | 216593 | NA | NA |
01001020400 | 01 | 001 | 020400 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 4840 | 1957 | 1839 | 501 | 4840 | 10.35124 | 0.2177 | 0 | 101 | 2129 | 4.744011 | 0.2447 | 0 | 310 | 1549 | 20.01291 | 0.17080 | 0 | 89 | 290 | 30.68966 | 0.2044 | 0 | 399 | 1839 | 21.69657 | 0.10540 | 0 | 274 | 3280 | 8.353658 | 0.3205 | 0 | 399 | 4293 | 9.294200 | 0.3171 | 0 | 955 | 19.731405 | 0.8643 | 1 | 1195 | 24.69008 | 0.5530 | 0 | 625 | 3328 | 18.78005 | 0.7233 | 0 | 152 | 1374 | 11.062591 | 0.34710 | 0 | 10 | 4537 | 0.2204100 | 0.22560 | 0 | 297 | 4840 | 6.136364 | 0.1647 | 0 | 1957 | 33 | 1.6862545 | 0.3843 | 0 | 25 | 1.2774655 | 0.5516 | 0 | 14 | 1839 | 0.7612833 | 0.3564 | 0 | 19 | 1839 | 1.033170 | 0.1127 | 0 | 0 | 4840 | 0 | 0.364 | 0 | 1.20540 | 0.13470 | 0 | 2.71330 | 0.6129 | 1 | 0.1647 | 0.1632 | 0 | 1.7690 | 0.1591 | 0 | 5.85240 | 0.1954 | 1 | 3539 | 1741 | 1636 | 503 | 3539 | 14.21305 | 0.3472 | 0 | 39 | 1658 | 2.352232 | 0.17990 | 0 | 219 | 1290 | 16.976744 | 0.30880 | 0 | 74 | 346 | 21.38728 | 0.1037 | 0 | 293 | 1636 | 17.90954 | 0.1333 | 0 | 173 | 2775 | 6.234234 | 0.3351 | 0 | 169 | 3529 | 4.788892 | 0.3448 | 0 | 969 | 27.38062 | 0.9225 | 1 | 510 | 14.41085 | 0.1208 | 0 | 670 | 3019 | 22.19278 | 0.8194 | 1 | 148 | 1137 | 13.01671 | 0.4541 | 0 | 89 | 3409 | 2.6107363 | 0.64690 | 0 | 454 | 3539 | 12.82848 | 0.2364 | 0 | 1741 | 143 | 8.2136703 | 0.6028 | 0 | 0 | 0.0000000 | 0.2186 | 0 | 10 | 1636 | 0.6112469 | 0.28340 | 0 | 72 | 1636 | 4.400978 | 0.4538 | 0 | 0 | 3539 | 0.000000 | 0.1831 | 0 | 1.34030 | 0.1575 | 0 | 2.96370 | 0.7496 | 2 | 0.2364 | 0.2344 | 0 | 1.74170 | 0.16270 | 0 | 6.28210 | 0.2389 | 2 | NA | NA | NA | NA |
01001020500 | 01 | 001 | 020500 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 9938 | 3969 | 3741 | 1096 | 9938 | 11.02838 | 0.2364 | 0 | 188 | 4937 | 3.807981 | 0.1577 | 0 | 426 | 2406 | 17.70574 | 0.11050 | 0 | 528 | 1335 | 39.55056 | 0.3753 | 0 | 954 | 3741 | 25.50120 | 0.20140 | 0 | 293 | 5983 | 4.897209 | 0.1655 | 0 | 740 | 10110 | 7.319486 | 0.2211 | 0 | 837 | 8.422218 | 0.2408 | 0 | 3012 | 30.30791 | 0.8455 | 1 | 759 | 7155 | 10.60797 | 0.2668 | 0 | 476 | 2529 | 18.821669 | 0.63540 | 0 | 78 | 9297 | 0.8389803 | 0.41110 | 0 | 1970 | 9938 | 19.822902 | 0.4330 | 0 | 3969 | 306 | 7.7097506 | 0.6153 | 0 | 0 | 0.0000000 | 0.2198 | 0 | 7 | 3741 | 0.1871157 | 0.2535 | 0 | 223 | 3741 | 5.960973 | 0.5483 | 0 | 0 | 9938 | 0 | 0.364 | 0 | 0.98210 | 0.08468 | 0 | 2.39960 | 0.4381 | 1 | 0.4330 | 0.4290 | 0 | 2.0009 | 0.2430 | 0 | 5.81560 | 0.1905 | 1 | 10674 | 4504 | 4424 | 1626 | 10509 | 15.47245 | 0.3851 | 0 | 81 | 5048 | 1.604596 | 0.09431 | 0 | 321 | 2299 | 13.962592 | 0.17970 | 0 | 711 | 2125 | 33.45882 | 0.2836 | 0 | 1032 | 4424 | 23.32731 | 0.3109 | 0 | 531 | 6816 | 7.790493 | 0.4251 | 0 | 301 | 10046 | 2.996217 | 0.1894 | 0 | 1613 | 15.11149 | 0.4553 | 0 | 2765 | 25.90407 | 0.7494 | 0 | 1124 | 7281 | 15.43744 | 0.5253 | 0 | 342 | 2912 | 11.74451 | 0.4019 | 0 | 52 | 9920 | 0.5241935 | 0.35230 | 0 | 2603 | 10674 | 24.38636 | 0.4160 | 0 | 4504 | 703 | 15.6083481 | 0.7378 | 0 | 29 | 0.6438721 | 0.5037 | 0 | 37 | 4424 | 0.8363472 | 0.33420 | 0 | 207 | 4424 | 4.679023 | 0.4754 | 0 | 176 | 10674 | 1.648866 | 0.7598 | 1 | 1.40481 | 0.1743 | 0 | 2.48420 | 0.4802 | 0 | 0.4160 | 0.4125 | 0 | 2.81090 | 0.63730 | 1 | 7.11591 | 0.3654 | 1 | 5 | 2250459 | NA | NA |
01001020600 | 01 | 001 | 020600 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 3402 | 1456 | 1308 | 735 | 3402 | 21.60494 | 0.5199 | 0 | 134 | 1720 | 7.790698 | 0.5436 | 0 | 242 | 1032 | 23.44961 | 0.28010 | 0 | 62 | 276 | 22.46377 | 0.1035 | 0 | 304 | 1308 | 23.24159 | 0.14070 | 0 | 301 | 2151 | 13.993491 | 0.5510 | 0 | 355 | 3445 | 10.304790 | 0.3656 | 0 | 386 | 11.346267 | 0.4232 | 0 | 931 | 27.36626 | 0.7200 | 0 | 440 | 2439 | 18.04018 | 0.6912 | 0 | 143 | 924 | 15.476190 | 0.52900 | 0 | 4 | 3254 | 0.1229256 | 0.19840 | 0 | 723 | 3402 | 21.252205 | 0.4519 | 0 | 1456 | 18 | 1.2362637 | 0.3507 | 0 | 433 | 29.7390110 | 0.9468 | 1 | 16 | 1308 | 1.2232416 | 0.4493 | 0 | 28 | 1308 | 2.140673 | 0.2298 | 0 | 0 | 3402 | 0 | 0.364 | 0 | 2.12080 | 0.39510 | 0 | 2.56180 | 0.5288 | 0 | 0.4519 | 0.4477 | 0 | 2.3406 | 0.4048 | 1 | 7.47510 | 0.4314 | 1 | 3536 | 1464 | 1330 | 1279 | 3523 | 36.30429 | 0.8215 | 1 | 34 | 1223 | 2.780049 | 0.23780 | 0 | 321 | 1111 | 28.892889 | 0.75870 | 1 | 67 | 219 | 30.59361 | 0.2305 | 0 | 388 | 1330 | 29.17293 | 0.5075 | 0 | 306 | 2380 | 12.857143 | 0.6480 | 0 | 415 | 3496 | 11.870709 | 0.7535 | 1 | 547 | 15.46946 | 0.4760 | 0 | 982 | 27.77149 | 0.8327 | 1 | 729 | 2514 | 28.99761 | 0.9488 | 1 | 95 | 880 | 10.79545 | 0.3601 | 0 | 0 | 3394 | 0.0000000 | 0.09479 | 0 | 985 | 3536 | 27.85633 | 0.4608 | 0 | 1464 | 0 | 0.0000000 | 0.1079 | 0 | 364 | 24.8633880 | 0.9300 | 1 | 0 | 1330 | 0.0000000 | 0.09796 | 0 | 17 | 1330 | 1.278196 | 0.1463 | 0 | 0 | 3536 | 0.000000 | 0.1831 | 0 | 2.96830 | 0.6434 | 2 | 2.71239 | 0.6156 | 2 | 0.4608 | 0.4569 | 0 | 1.46526 | 0.08976 | 1 | 7.60675 | 0.4440 | 5 | NA | NA | NA | NA |
Now we need to check our data set to see if there are any 0 counts for our pre10 LIHTC projects. We can see there are none and only NA values:
# A tibble: 0 × 225
# ℹ 225 variables: GEOID_2010_trt <chr>, FIPS_st <chr>, FIPS_county <chr>,
# FIPS_tract <chr>, state <chr>, state_name <chr>, county <chr>,
# region_number <dbl>, region <chr>, division_number <dbl>, division <chr>,
# E_TOTPOP_10 <dbl>, E_HU_10 <dbl>, E_HH_10 <dbl>, E_POV150_10 <dbl>,
# ET_POVSTATUS_10 <dbl>, EP_POV150_10 <dbl>, EPL_POV150_10 <dbl>,
# F_POV150_10 <dbl>, E_UNEMP_10 <dbl>, ET_EMPSTATUS_10 <dbl>,
# EP_UNEMP_10 <dbl>, EPL_UNEMP_10 <dbl>, F_UNEMP_10 <dbl>, …
GEOID_2010_trt | FIPS_st | FIPS_county | FIPS_tract | state | state_name | county | region_number | region | division_number | division | E_TOTPOP_10 | E_HU_10 | E_HH_10 | E_POV150_10 | ET_POVSTATUS_10 | EP_POV150_10 | EPL_POV150_10 | F_POV150_10 | E_UNEMP_10 | ET_EMPSTATUS_10 | EP_UNEMP_10 | EPL_UNEMP_10 | F_UNEMP_10 | E_HBURD_OWN_10 | ET_HOUSINGCOST_OWN_10 | EP_HBURD_OWN_10 | EPL_HBURD_OWN_10 | F_HBURD_OWN_10 | E_HBURD_RENT_10 | ET_HOUSINGCOST_RENT_10 | EP_HBURD_RENT_10 | EPL_HBURD_RENT_10 | F_HBURD_RENT_10 | E_HBURD_10 | ET_HOUSINGCOST_10 | EP_HBURD_10 | EPL_HBURD_10 | F_HBURD_10 | E_NOHSDP_10 | ET_EDSTATUS_10 | EP_NOHSDP_10 | EPL_NOHSDP_10 | F_NOHSDP_10 | E_UNINSUR_12 | ET_INSURSTATUS_12 | EP_UNINSUR_12 | EPL_UNINSUR_12 | F_UNINSUR_12 | E_AGE65_10 | EP_AGE65_10 | EPL_AGE65_10 | F_AGE65_10 | E_AGE17_10 | EP_AGE17_10 | EPL_AGE17_10 | F_AGE17_10 | E_DISABL_12 | ET_DISABLSTATUS_12 | EP_DISABL_12 | EPL_DISABL_12 | F_DISABL_12 | E_SNGPNT_10 | ET_FAMILIES_10 | EP_SNGPNT_10 | EPL_SNGPNT_10 | F_SNGPNT_10 | E_LIMENG_10 | ET_POPAGE5UP_10 | EP_LIMENG_10 | EPL_LIMENG_10 | F_LIMENG_10 | E_MINRTY_10 | ET_POPETHRACE_10 | EP_MINRTY_10 | EPL_MINRTY_10 | F_MINRTY_10 | E_STRHU_10 | E_MUNIT_10 | EP_MUNIT_10 | EPL_MUNIT_10 | F_MUNIT_10 | E_MOBILE_10 | EP_MOBILE_10 | EPL_MOBILE_10 | F_MOBILE_10 | E_CROWD_10 | ET_OCCUPANTS_10 | EP_CROWD_10 | EPL_CROWD_10 | F_CROWD_10 | E_NOVEH_10 | ET_KNOWNVEH_10 | EP_NOVEH_10 | EPL_NOVEH_10 | F_NOVEH_10 | E_GROUPQ_10 | ET_HHTYPE_10 | EP_GROUPQ_10 | EPL_GROUPQ_10 | F_GROUPQ_10 | SPL_THEME1_10 | RPL_THEME1_10 | F_THEME1_10 | SPL_THEME2_10 | RPL_THEME2_10 | F_THEME2_10 | SPL_THEME3_10 | RPL_THEME3_10 | F_THEME3_10 | SPL_THEME4_10 | RPL_THEME4_10 | F_THEME4_10 | SPL_THEMES_10 | RPL_THEMES_10 | F_TOTAL_10 | E_TOTPOP_20 | E_HU_20 | E_HH_20 | E_POV150_20 | ET_POVSTATUS_20 | EP_POV150_20 | EPL_POV150_20 | F_POV150_20 | E_UNEMP_20 | ET_EMPSTATUS_20 | EP_UNEMP_20 | EPL_UNEMP_20 | F_UNEMP_20 | E_HBURD_OWN_20 | ET_HOUSINGCOST_OWN_20 | EP_HBURD_OWN_20 | EPL_HBURD_OWN_20 | F_HBURD_OWN_20 | E_HBURD_RENT_20 | ET_HOUSINGCOST_RENT_20 | EP_HBURD_RENT_20 | EPL_HBURD_RENT_20 | F_HBURD_RENT_20 | E_HBURD_20 | ET_HOUSINGCOST_20 | EP_HBURD_20 | EPL_HBURD_20 | F_HBURD_20 | E_NOHSDP_20 | ET_EDSTATUS_20 | EP_NOHSDP_20 | EPL_NOHSDP_20 | F_NOHSDP_20 | E_UNINSUR_20 | ET_INSURSTATUS_20 | EP_UNINSUR_20 | EPL_UNINSUR_20 | F_UNINSUR_20 | E_AGE65_20 | EP_AGE65_20 | EPL_AGE65_20 | F_AGE65_20 | E_AGE17_20 | EP_AGE17_20 | EPL_AGE17_20 | F_AGE17_20 | E_DISABL_20 | ET_DISABLSTATUS_20 | EP_DISABL_20 | EPL_DISABL_20 | F_DISABL_20 | E_SNGPNT_20 | ET_FAMILIES_20 | EP_SNGPNT_20 | EPL_SNGPNT_20 | F_SNGPNT_20 | E_LIMENG_20 | ET_POPAGE5UP_20 | EP_LIMENG_20 | EPL_LIMENG_20 | F_LIMENG_20 | E_MINRTY_20 | ET_POPETHRACE_20 | EP_MINRTY_20 | EPL_MINRTY_20 | F_MINRTY_20 | E_STRHU_20 | E_MUNIT_20 | EP_MUNIT_20 | EPL_MUNIT_20 | F_MUNIT_20 | E_MOBILE_20 | EP_MOBILE_20 | EPL_MOBILE_20 | F_MOBILE_20 | E_CROWD_20 | ET_OCCUPANTS_20 | EP_CROWD_20 | EPL_CROWD_20 | F_CROWD_20 | E_NOVEH_20 | ET_KNOWNVEH_20 | EP_NOVEH_20 | EPL_NOVEH_20 | F_NOVEH_20 | E_GROUPQ_20 | ET_HHTYPE_20 | EP_GROUPQ_20 | EPL_GROUPQ_20 | F_GROUPQ_20 | SPL_THEME1_20 | RPL_THEME1_20 | F_THEME1_20 | SPL_THEME2_20 | RPL_THEME2_20 | F_THEME2_20 | SPL_THEME3_20 | RPL_THEME3_20 | F_THEME3_20 | SPL_THEME4_20 | RPL_THEME4_20 | F_THEME4_20 | SPL_THEMES_20 | RPL_THEMES_20 | F_TOTAL_20 | pre10_lihtc_project_cnt | pre10_lihtc_project_dollars | post10_lihtc_project_cnt | post10_lihtc_project_dollars |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
34001000100 | 34 | 001 | 000100 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 2907 | 1088 | 983 | 1127 | 2907 | 38.76849 | 0.8482 | 1 | 144 | 1433 | 10.048849 | 0.7544 | 1 | 280 | 435 | 64.36782 | 0.9529 | 1 | 204 | 548 | 37.22628 | 0.2998 | 0 | 484 | 983 | 49.23703 | 0.7813 | 1 | 468 | 1759 | 26.60603 | 0.8634 | 1 | 532 | 2543 | 20.92017 | 0.8978 | 1 | 250 | 8.599931 | 0.1777 | 0 | 944 | 32.47334 | 0.94170 | 1 | 186 | 1851 | 10.04862 | 0.2706 | 0 | 266 | 678 | 39.233038 | 0.8981 | 1 | 177 | 2611 | 6.779012 | 0.7778 | 1 | 1928 | 2907 | 66.32267 | 0.7743 | 1 | 1088 | 113 | 10.386029 | 0.6229 | 0 | 9 | 0.8272059 | 0.7223 | 0 | 80 | 983 | 8.138352 | 0.8657 | 1 | 265 | 983 | 26.95829 | 0.7354 | 0 | 0 | 2907 | 0.000000 | 0.3512 | 0 | 4.1451 | 0.8935 | 5 | 3.06590 | 0.7944 | 3 | 0.7743 | 0.7667 | 1 | 3.2975 | 0.8414 | 1 | 11.28280 | 0.8862 | 10 | 2157 | 941 | 784 | 1182 | 2157 | 54.79833 | 0.9571 | 1 | 242 | 1058 | 22.873346 | 0.9922 | 1 | 215 | 342 | 62.86550 | 0.9780 | 1 | 316 | 442 | 71.49321 | 0.9481 | 1 | 531 | 784 | 67.72959 | 0.9893 | 1 | 396 | 1274 | 31.08320 | 0.9497 | 1 | 266 | 2157 | 12.33194 | 0.9041 | 1 | 185 | 8.576727 | 0.09430 | 0 | 552 | 25.59110 | 0.8128 | 1 | 297 | 1605 | 18.504673 | 0.74880 | 0 | 83 | 510 | 16.27451 | 0.6090 | 0 | 251 | 2020 | 12.42574 | 0.8710 | 1 | 1852 | 2157 | 85.85999 | 0.8476 | 1 | 941 | 118 | 12.5398512 | 0.6385 | 0 | 0 | 0.0000000 | 0.3216 | 0 | 67 | 784 | 8.545918 | 0.8657 | 1 | 212 | 784 | 27.04082 | 0.7502 | 1 | 0 | 2157 | 0.0000000 | 0.1517 | 0 | 4.7924 | 0.9850 | 5 | 3.13590 | 0.8217 | 2 | 0.8476 | 0.8400 | 1 | 2.7277 | 0.6085 | 2 | 11.50360 | 0.9104 | 10 | NA | NA | NA | NA |
34001000200 | 34 | 001 | 000200 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 3189 | 2217 | 1473 | 519 | 3189 | 16.27469 | 0.4806 | 0 | 109 | 1558 | 6.996149 | 0.5179 | 0 | 573 | 955 | 60.00000 | 0.9323 | 1 | 199 | 518 | 38.41699 | 0.3261 | 0 | 772 | 1473 | 52.41005 | 0.8418 | 1 | 405 | 2579 | 15.70376 | 0.6491 | 0 | 484 | 3547 | 13.64533 | 0.7154 | 0 | 847 | 26.560050 | 0.9629 | 1 | 436 | 13.67200 | 0.08181 | 0 | 608 | 3005 | 20.23295 | 0.8466 | 1 | 42 | 857 | 4.900817 | 0.1204 | 0 | 422 | 3072 | 13.736979 | 0.8799 | 1 | 1792 | 3189 | 56.19316 | 0.7390 | 0 | 2217 | 901 | 40.640505 | 0.8693 | 1 | 0 | 0.0000000 | 0.3251 | 0 | 48 | 1473 | 3.258656 | 0.7064 | 0 | 250 | 1473 | 16.97217 | 0.6444 | 0 | 0 | 3189 | 0.000000 | 0.3512 | 0 | 3.2048 | 0.6963 | 1 | 2.89161 | 0.7231 | 3 | 0.7390 | 0.7317 | 0 | 2.8964 | 0.6887 | 1 | 9.73181 | 0.7340 | 5 | 3510 | 2046 | 1353 | 1021 | 3510 | 29.08832 | 0.7682 | 1 | 121 | 1852 | 6.533477 | 0.6717 | 0 | 343 | 696 | 49.28161 | 0.9273 | 1 | 416 | 657 | 63.31811 | 0.8696 | 1 | 759 | 1353 | 56.09756 | 0.9321 | 1 | 553 | 2338 | 23.65269 | 0.8871 | 1 | 354 | 3510 | 10.08547 | 0.8530 | 1 | 643 | 18.319088 | 0.60310 | 0 | 1002 | 28.54701 | 0.9055 | 1 | 450 | 2508 | 17.942584 | 0.72330 | 0 | 237 | 786 | 30.15267 | 0.8539 | 1 | 534 | 3375 | 15.82222 | 0.9062 | 1 | 2534 | 3510 | 72.19373 | 0.7818 | 1 | 2046 | 906 | 44.2815249 | 0.8690 | 1 | 0 | 0.0000000 | 0.3216 | 0 | 119 | 1353 | 8.795270 | 0.8711 | 1 | 324 | 1353 | 23.94678 | 0.7255 | 0 | 0 | 3510 | 0.0000000 | 0.1517 | 0 | 4.1121 | 0.9003 | 4 | 3.99200 | 0.9781 | 3 | 0.7818 | 0.7747 | 1 | 2.9389 | 0.7011 | 2 | 11.82480 | 0.9310 | 10 | NA | NA | NA | NA |
34001000300 | 34 | 001 | 000300 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 3997 | 1823 | 1357 | 1401 | 3968 | 35.30746 | 0.8164 | 1 | 382 | 2238 | 17.068811 | 0.9376 | 1 | 176 | 329 | 53.49544 | 0.8855 | 1 | 604 | 1028 | 58.75486 | 0.7947 | 1 | 780 | 1357 | 57.47973 | 0.9165 | 1 | 920 | 2677 | 34.36683 | 0.9346 | 1 | 1351 | 4149 | 32.56206 | 0.9811 | 1 | 314 | 7.855892 | 0.1437 | 0 | 937 | 23.44258 | 0.55900 | 0 | 319 | 3054 | 10.44532 | 0.3000 | 0 | 187 | 782 | 23.913044 | 0.7498 | 0 | 1080 | 3671 | 29.419777 | 0.9742 | 1 | 3357 | 3997 | 83.98799 | 0.8419 | 1 | 1823 | 363 | 19.912233 | 0.7535 | 1 | 0 | 0.0000000 | 0.3251 | 0 | 150 | 1357 | 11.053795 | 0.9136 | 1 | 651 | 1357 | 47.97347 | 0.8585 | 1 | 0 | 3997 | 0.000000 | 0.3512 | 0 | 4.5862 | 0.9691 | 5 | 2.72670 | 0.6360 | 1 | 0.8419 | 0.8336 | 1 | 3.2019 | 0.8054 | 3 | 11.35670 | 0.8920 | 10 | 3801 | 1640 | 1226 | 1857 | 3801 | 48.85556 | 0.9333 | 1 | 226 | 1800 | 12.555556 | 0.9267 | 1 | 111 | 280 | 39.64286 | 0.8339 | 1 | 608 | 946 | 64.27061 | 0.8842 | 1 | 719 | 1226 | 58.64600 | 0.9528 | 1 | 650 | 2275 | 28.57143 | 0.9337 | 1 | 1027 | 3801 | 27.01921 | 0.9914 | 1 | 380 | 9.997369 | 0.14040 | 0 | 1223 | 32.17574 | 0.9607 | 1 | 219 | 2578 | 8.494957 | 0.15680 | 0 | 268 | 909 | 29.48295 | 0.8456 | 1 | 940 | 3400 | 27.64706 | 0.9728 | 1 | 3318 | 3801 | 87.29282 | 0.8579 | 1 | 1640 | 262 | 15.9756098 | 0.6917 | 0 | 0 | 0.0000000 | 0.3216 | 0 | 124 | 1226 | 10.114192 | 0.8955 | 1 | 477 | 1226 | 38.90701 | 0.8258 | 1 | 0 | 3801 | 0.0000000 | 0.1517 | 0 | 4.7379 | 0.9829 | 5 | 3.07630 | 0.8013 | 3 | 0.8579 | 0.8501 | 1 | 2.8863 | 0.6781 | 2 | 11.55840 | 0.9150 | 11 | NA | NA | NA | NA |
34001000400 | 34 | 001 | 000400 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 2902 | 2683 | 1401 | 1172 | 2902 | 40.38594 | 0.8615 | 1 | 190 | 1389 | 13.678906 | 0.8811 | 1 | 364 | 707 | 51.48515 | 0.8627 | 1 | 507 | 694 | 73.05476 | 0.9503 | 1 | 871 | 1401 | 62.16988 | 0.9572 | 1 | 481 | 1981 | 24.28067 | 0.8339 | 1 | 674 | 3204 | 21.03620 | 0.8998 | 1 | 434 | 14.955203 | 0.6083 | 0 | 596 | 20.53756 | 0.33980 | 0 | 426 | 2607 | 16.34062 | 0.6886 | 0 | 111 | 652 | 17.024540 | 0.6204 | 0 | 215 | 2736 | 7.858187 | 0.8008 | 1 | 1792 | 2902 | 61.75052 | 0.7584 | 1 | 2683 | 2049 | 76.369735 | 0.9401 | 1 | 0 | 0.0000000 | 0.3251 | 0 | 69 | 1401 | 4.925053 | 0.7847 | 1 | 511 | 1401 | 36.47395 | 0.7992 | 1 | 72 | 2902 | 2.481048 | 0.8114 | 1 | 4.4335 | 0.9468 | 5 | 3.05790 | 0.7908 | 1 | 0.7584 | 0.7510 | 1 | 3.6605 | 0.9391 | 4 | 11.91030 | 0.9339 | 11 | 3178 | 2264 | 1390 | 1508 | 3176 | 47.48111 | 0.9246 | 1 | 172 | 1804 | 9.534368 | 0.8460 | 1 | 205 | 468 | 43.80342 | 0.8858 | 1 | 622 | 922 | 67.46204 | 0.9192 | 1 | 827 | 1390 | 59.49640 | 0.9587 | 1 | 364 | 2076 | 17.53372 | 0.8013 | 1 | 476 | 3178 | 14.97797 | 0.9390 | 1 | 483 | 15.198238 | 0.41220 | 0 | 539 | 16.96035 | 0.2484 | 0 | 319 | 2639 | 12.087912 | 0.38790 | 0 | 101 | 565 | 17.87611 | 0.6539 | 0 | 583 | 3022 | 19.29186 | 0.9349 | 1 | 2186 | 3178 | 68.78540 | 0.7658 | 1 | 2264 | 1609 | 71.0689046 | 0.9266 | 1 | 15 | 0.6625442 | 0.7078 | 0 | 226 | 1390 | 16.258993 | 0.9567 | 1 | 599 | 1390 | 43.09353 | 0.8474 | 1 | 20 | 3178 | 0.6293266 | 0.6292 | 0 | 4.4696 | 0.9558 | 5 | 2.63730 | 0.5864 | 1 | 0.7658 | 0.7588 | 1 | 4.0677 | 0.9762 | 3 | 11.94040 | 0.9387 | 10 | NA | NA | NA | NA |
34001000500 | 34 | 001 | 000500 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 3483 | 1241 | 1027 | 1938 | 3483 | 55.64169 | 0.9533 | 1 | 124 | 1630 | 7.607362 | 0.5830 | 0 | 227 | 446 | 50.89686 | 0.8549 | 1 | 478 | 581 | 82.27194 | 0.9799 | 1 | 705 | 1027 | 68.64654 | 0.9863 | 1 | 733 | 2077 | 35.29129 | 0.9396 | 1 | 727 | 3258 | 22.31430 | 0.9149 | 1 | 377 | 10.824002 | 0.3081 | 0 | 1055 | 30.28998 | 0.90140 | 1 | 268 | 2401 | 11.16202 | 0.3549 | 0 | 209 | 763 | 27.391874 | 0.7940 | 1 | 911 | 3077 | 29.606760 | 0.9746 | 1 | 3036 | 3483 | 87.16624 | 0.8550 | 1 | 1241 | 52 | 4.190169 | 0.4505 | 0 | 4 | 0.3223207 | 0.6567 | 0 | 113 | 1027 | 11.002921 | 0.9128 | 1 | 422 | 1027 | 41.09056 | 0.8250 | 1 | 0 | 3483 | 0.000000 | 0.3512 | 0 | 4.3771 | 0.9379 | 4 | 3.33300 | 0.8766 | 3 | 0.8550 | 0.8467 | 1 | 3.1962 | 0.8026 | 2 | 11.76130 | 0.9229 | 10 | 3385 | 1185 | 945 | 1682 | 3364 | 50.00000 | 0.9391 | 1 | 72 | 1577 | 4.565631 | 0.4586 | 0 | 185 | 468 | 39.52991 | 0.8332 | 1 | 362 | 477 | 75.89099 | 0.9703 | 1 | 547 | 945 | 57.88360 | 0.9477 | 1 | 592 | 1983 | 29.85376 | 0.9422 | 1 | 738 | 3385 | 21.80207 | 0.9817 | 1 | 240 | 7.090103 | 0.05988 | 0 | 1129 | 33.35303 | 0.9689 | 1 | 135 | 2256 | 5.984043 | 0.04817 | 0 | 110 | 717 | 15.34170 | 0.5822 | 0 | 721 | 3076 | 23.43953 | 0.9569 | 1 | 3029 | 3385 | 89.48301 | 0.8727 | 1 | 1185 | 9 | 0.7594937 | 0.2382 | 0 | 0 | 0.0000000 | 0.3216 | 0 | 103 | 945 | 10.899471 | 0.9072 | 1 | 263 | 945 | 27.83069 | 0.7560 | 1 | 0 | 3385 | 0.0000000 | 0.1517 | 0 | 4.2693 | 0.9283 | 4 | 2.61605 | 0.5709 | 2 | 0.8727 | 0.8648 | 1 | 2.3747 | 0.4357 | 2 | 10.13275 | 0.7921 | 9 | NA | NA | NA | NA |
# A tibble: 0 × 225
# ℹ 225 variables: GEOID_2010_trt <chr>, FIPS_st <chr>, FIPS_county <chr>,
# FIPS_tract <chr>, state <chr>, state_name <chr>, county <chr>,
# region_number <dbl>, region <chr>, division_number <dbl>, division <chr>,
# E_TOTPOP_10 <dbl>, E_HU_10 <dbl>, E_HH_10 <dbl>, E_POV150_10 <dbl>,
# ET_POVSTATUS_10 <dbl>, EP_POV150_10 <dbl>, EPL_POV150_10 <dbl>,
# F_POV150_10 <dbl>, E_UNEMP_10 <dbl>, ET_EMPSTATUS_10 <dbl>,
# EP_UNEMP_10 <dbl>, EPL_UNEMP_10 <dbl>, F_UNEMP_10 <dbl>, …
GEOID_2010_trt | FIPS_st | FIPS_county | FIPS_tract | state | state_name | county | region_number | region | division_number | division | E_TOTPOP_10 | E_HU_10 | E_HH_10 | E_POV150_10 | ET_POVSTATUS_10 | EP_POV150_10 | EPL_POV150_10 | F_POV150_10 | E_UNEMP_10 | ET_EMPSTATUS_10 | EP_UNEMP_10 | EPL_UNEMP_10 | F_UNEMP_10 | E_HBURD_OWN_10 | ET_HOUSINGCOST_OWN_10 | EP_HBURD_OWN_10 | EPL_HBURD_OWN_10 | F_HBURD_OWN_10 | E_HBURD_RENT_10 | ET_HOUSINGCOST_RENT_10 | EP_HBURD_RENT_10 | EPL_HBURD_RENT_10 | F_HBURD_RENT_10 | E_HBURD_10 | ET_HOUSINGCOST_10 | EP_HBURD_10 | EPL_HBURD_10 | F_HBURD_10 | E_NOHSDP_10 | ET_EDSTATUS_10 | EP_NOHSDP_10 | EPL_NOHSDP_10 | F_NOHSDP_10 | E_UNINSUR_12 | ET_INSURSTATUS_12 | EP_UNINSUR_12 | EPL_UNINSUR_12 | F_UNINSUR_12 | E_AGE65_10 | EP_AGE65_10 | EPL_AGE65_10 | F_AGE65_10 | E_AGE17_10 | EP_AGE17_10 | EPL_AGE17_10 | F_AGE17_10 | E_DISABL_12 | ET_DISABLSTATUS_12 | EP_DISABL_12 | EPL_DISABL_12 | F_DISABL_12 | E_SNGPNT_10 | ET_FAMILIES_10 | EP_SNGPNT_10 | EPL_SNGPNT_10 | F_SNGPNT_10 | E_LIMENG_10 | ET_POPAGE5UP_10 | EP_LIMENG_10 | EPL_LIMENG_10 | F_LIMENG_10 | E_MINRTY_10 | ET_POPETHRACE_10 | EP_MINRTY_10 | EPL_MINRTY_10 | F_MINRTY_10 | E_STRHU_10 | E_MUNIT_10 | EP_MUNIT_10 | EPL_MUNIT_10 | F_MUNIT_10 | E_MOBILE_10 | EP_MOBILE_10 | EPL_MOBILE_10 | F_MOBILE_10 | E_CROWD_10 | ET_OCCUPANTS_10 | EP_CROWD_10 | EPL_CROWD_10 | F_CROWD_10 | E_NOVEH_10 | ET_KNOWNVEH_10 | EP_NOVEH_10 | EPL_NOVEH_10 | F_NOVEH_10 | E_GROUPQ_10 | ET_HHTYPE_10 | EP_GROUPQ_10 | EPL_GROUPQ_10 | F_GROUPQ_10 | SPL_THEME1_10 | RPL_THEME1_10 | F_THEME1_10 | SPL_THEME2_10 | RPL_THEME2_10 | F_THEME2_10 | SPL_THEME3_10 | RPL_THEME3_10 | F_THEME3_10 | SPL_THEME4_10 | RPL_THEME4_10 | F_THEME4_10 | SPL_THEMES_10 | RPL_THEMES_10 | F_TOTAL_10 | E_TOTPOP_20 | E_HU_20 | E_HH_20 | E_POV150_20 | ET_POVSTATUS_20 | EP_POV150_20 | EPL_POV150_20 | F_POV150_20 | E_UNEMP_20 | ET_EMPSTATUS_20 | EP_UNEMP_20 | EPL_UNEMP_20 | F_UNEMP_20 | E_HBURD_OWN_20 | ET_HOUSINGCOST_OWN_20 | EP_HBURD_OWN_20 | EPL_HBURD_OWN_20 | F_HBURD_OWN_20 | E_HBURD_RENT_20 | ET_HOUSINGCOST_RENT_20 | EP_HBURD_RENT_20 | EPL_HBURD_RENT_20 | F_HBURD_RENT_20 | E_HBURD_20 | ET_HOUSINGCOST_20 | EP_HBURD_20 | EPL_HBURD_20 | F_HBURD_20 | E_NOHSDP_20 | ET_EDSTATUS_20 | EP_NOHSDP_20 | EPL_NOHSDP_20 | F_NOHSDP_20 | E_UNINSUR_20 | ET_INSURSTATUS_20 | EP_UNINSUR_20 | EPL_UNINSUR_20 | F_UNINSUR_20 | E_AGE65_20 | EP_AGE65_20 | EPL_AGE65_20 | F_AGE65_20 | E_AGE17_20 | EP_AGE17_20 | EPL_AGE17_20 | F_AGE17_20 | E_DISABL_20 | ET_DISABLSTATUS_20 | EP_DISABL_20 | EPL_DISABL_20 | F_DISABL_20 | E_SNGPNT_20 | ET_FAMILIES_20 | EP_SNGPNT_20 | EPL_SNGPNT_20 | F_SNGPNT_20 | E_LIMENG_20 | ET_POPAGE5UP_20 | EP_LIMENG_20 | EPL_LIMENG_20 | F_LIMENG_20 | E_MINRTY_20 | ET_POPETHRACE_20 | EP_MINRTY_20 | EPL_MINRTY_20 | F_MINRTY_20 | E_STRHU_20 | E_MUNIT_20 | EP_MUNIT_20 | EPL_MUNIT_20 | F_MUNIT_20 | E_MOBILE_20 | EP_MOBILE_20 | EPL_MOBILE_20 | F_MOBILE_20 | E_CROWD_20 | ET_OCCUPANTS_20 | EP_CROWD_20 | EPL_CROWD_20 | F_CROWD_20 | E_NOVEH_20 | ET_KNOWNVEH_20 | EP_NOVEH_20 | EPL_NOVEH_20 | F_NOVEH_20 | E_GROUPQ_20 | ET_HHTYPE_20 | EP_GROUPQ_20 | EPL_GROUPQ_20 | F_GROUPQ_20 | SPL_THEME1_20 | RPL_THEME1_20 | F_THEME1_20 | SPL_THEME2_20 | RPL_THEME2_20 | F_THEME2_20 | SPL_THEME3_20 | RPL_THEME3_20 | F_THEME3_20 | SPL_THEME4_20 | RPL_THEME4_20 | F_THEME4_20 | SPL_THEMES_20 | RPL_THEMES_20 | F_TOTAL_20 | pre10_lihtc_project_cnt | pre10_lihtc_project_dollars | post10_lihtc_project_cnt | post10_lihtc_project_dollars |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
01001020100 | 01 | 001 | 020100 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 1809 | 771 | 696 | 297 | 1809 | 16.41791 | 0.3871 | 0 | 36 | 889 | 4.049494 | 0.17900 | 0 | 127 | 598 | 21.23746 | 0.20770 | 0 | 47 | 98 | 47.95918 | 0.5767 | 0 | 174 | 696 | 25.00000 | 0.18790 | 0 | 196 | 1242 | 15.780998 | 0.6093 | 0 | 186 | 1759 | 10.57419 | 0.3790 | 0 | 222 | 12.27197 | 0.4876 | 0 | 445 | 24.59923 | 0.5473 | 0 | 298 | 1335 | 22.32210 | 0.8454 | 1 | 27 | 545 | 4.954128 | 0.09275 | 0 | 36 | 1705 | 2.1114370 | 0.59040 | 0 | 385 | 1809 | 21.282477 | 0.4524 | 0 | 771 | 0 | 0.0000000 | 0.1224 | 0 | 92 | 11.932555 | 0.8005 | 1 | 0 | 696 | 0.0000000 | 0.1238 | 0 | 50 | 696 | 7.183908 | 0.6134 | 0 | 0 | 1809 | 0 | 0.364 | 0 | 1.74230 | 0.2820 | 0 | 2.56345 | 0.5296 | 1 | 0.4524 | 0.4482 | 0 | 2.0241 | 0.2519 | 1 | 6.78225 | 0.3278 | 2 | 1941 | 710 | 693 | 352 | 1941 | 18.13498 | 0.4630 | 0 | 18 | 852 | 2.112676 | 0.1507 | 0 | 81 | 507 | 15.976331 | 0.26320 | 0 | 63 | 186 | 33.87097 | 0.2913 | 0 | 144 | 693 | 20.77922 | 0.2230 | 0 | 187 | 1309 | 14.285714 | 0.6928 | 0 | 187 | 1941 | 9.634209 | 0.6617 | 0 | 295 | 15.198351 | 0.4601 | 0 | 415 | 21.38073 | 0.4681 | 0 | 391 | 1526 | 25.62254 | 0.9011 | 1 | 58 | 555 | 10.45045 | 0.3451 | 0 | 0 | 1843 | 0.000000 | 0.09479 | 0 | 437 | 1941 | 22.51417 | 0.3902 | 0 | 710 | 0 | 0.0000000 | 0.1079 | 0 | 88 | 12.3943662 | 0.8263 | 1 | 0 | 693 | 0.0000000 | 0.09796 | 0 | 10 | 693 | 1.443001 | 0.1643 | 0 | 0 | 1941 | 0.000000 | 0.1831 | 0 | 2.1912 | 0.4084 | 0 | 2.26919 | 0.3503 | 1 | 0.3902 | 0.3869 | 0 | 1.37956 | 0.07216 | 1 | 6.23015 | 0.2314 | 2 | NA | NA | NA | NA |
01001020200 | 01 | 001 | 020200 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 2020 | 816 | 730 | 495 | 1992 | 24.84940 | 0.5954 | 0 | 68 | 834 | 8.153477 | 0.57540 | 0 | 49 | 439 | 11.16173 | 0.02067 | 0 | 105 | 291 | 36.08247 | 0.3019 | 0 | 154 | 730 | 21.09589 | 0.09312 | 0 | 339 | 1265 | 26.798419 | 0.8392 | 1 | 313 | 2012 | 15.55666 | 0.6000 | 0 | 204 | 10.09901 | 0.3419 | 0 | 597 | 29.55446 | 0.8192 | 1 | 359 | 1515 | 23.69637 | 0.8791 | 1 | 132 | 456 | 28.947368 | 0.83510 | 1 | 15 | 1890 | 0.7936508 | 0.40130 | 0 | 1243 | 2020 | 61.534653 | 0.7781 | 1 | 816 | 0 | 0.0000000 | 0.1224 | 0 | 34 | 4.166667 | 0.6664 | 0 | 13 | 730 | 1.7808219 | 0.5406 | 0 | 115 | 730 | 15.753425 | 0.8382 | 1 | 0 | 2020 | 0 | 0.364 | 0 | 2.70312 | 0.5665 | 1 | 3.27660 | 0.8614 | 3 | 0.7781 | 0.7709 | 1 | 2.5316 | 0.5047 | 1 | 9.28942 | 0.6832 | 6 | 1757 | 720 | 573 | 384 | 1511 | 25.41363 | 0.6427 | 0 | 29 | 717 | 4.044630 | 0.4132 | 0 | 33 | 392 | 8.418367 | 0.03542 | 0 | 116 | 181 | 64.08840 | 0.9086 | 1 | 149 | 573 | 26.00349 | 0.4041 | 0 | 139 | 1313 | 10.586443 | 0.5601 | 0 | 91 | 1533 | 5.936073 | 0.4343 | 0 | 284 | 16.163916 | 0.5169 | 0 | 325 | 18.49744 | 0.2851 | 0 | 164 | 1208 | 13.57616 | 0.4127 | 0 | 42 | 359 | 11.69916 | 0.3998 | 0 | 0 | 1651 | 0.000000 | 0.09479 | 0 | 1116 | 1757 | 63.51736 | 0.7591 | 1 | 720 | 3 | 0.4166667 | 0.2470 | 0 | 5 | 0.6944444 | 0.5106 | 0 | 9 | 573 | 1.5706806 | 0.46880 | 0 | 57 | 573 | 9.947644 | 0.7317 | 0 | 212 | 1757 | 12.066022 | 0.9549 | 1 | 2.4544 | 0.4888 | 0 | 1.70929 | 0.1025 | 0 | 0.7591 | 0.7527 | 1 | 2.91300 | 0.68620 | 1 | 7.83579 | 0.4802 | 2 | NA | NA | NA | NA |
01001020400 | 01 | 001 | 020400 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 4840 | 1957 | 1839 | 501 | 4840 | 10.35124 | 0.2177 | 0 | 101 | 2129 | 4.744011 | 0.24470 | 0 | 310 | 1549 | 20.01291 | 0.17080 | 0 | 89 | 290 | 30.68966 | 0.2044 | 0 | 399 | 1839 | 21.69657 | 0.10540 | 0 | 274 | 3280 | 8.353658 | 0.3205 | 0 | 399 | 4293 | 9.29420 | 0.3171 | 0 | 955 | 19.73140 | 0.8643 | 1 | 1195 | 24.69008 | 0.5530 | 0 | 625 | 3328 | 18.78005 | 0.7233 | 0 | 152 | 1374 | 11.062591 | 0.34710 | 0 | 10 | 4537 | 0.2204100 | 0.22560 | 0 | 297 | 4840 | 6.136364 | 0.1647 | 0 | 1957 | 33 | 1.6862545 | 0.3843 | 0 | 25 | 1.277465 | 0.5516 | 0 | 14 | 1839 | 0.7612833 | 0.3564 | 0 | 19 | 1839 | 1.033170 | 0.1127 | 0 | 0 | 4840 | 0 | 0.364 | 0 | 1.20540 | 0.1347 | 0 | 2.71330 | 0.6129 | 1 | 0.1647 | 0.1632 | 0 | 1.7690 | 0.1591 | 0 | 5.85240 | 0.1954 | 1 | 3539 | 1741 | 1636 | 503 | 3539 | 14.21305 | 0.3472 | 0 | 39 | 1658 | 2.352232 | 0.1799 | 0 | 219 | 1290 | 16.976744 | 0.30880 | 0 | 74 | 346 | 21.38728 | 0.1037 | 0 | 293 | 1636 | 17.90954 | 0.1333 | 0 | 173 | 2775 | 6.234234 | 0.3351 | 0 | 169 | 3529 | 4.788892 | 0.3448 | 0 | 969 | 27.380616 | 0.9225 | 1 | 510 | 14.41085 | 0.1208 | 0 | 670 | 3019 | 22.19278 | 0.8194 | 1 | 148 | 1137 | 13.01671 | 0.4541 | 0 | 89 | 3409 | 2.610736 | 0.64690 | 0 | 454 | 3539 | 12.82848 | 0.2364 | 0 | 1741 | 143 | 8.2136703 | 0.6028 | 0 | 0 | 0.0000000 | 0.2186 | 0 | 10 | 1636 | 0.6112469 | 0.28340 | 0 | 72 | 1636 | 4.400978 | 0.4538 | 0 | 0 | 3539 | 0.000000 | 0.1831 | 0 | 1.3403 | 0.1575 | 0 | 2.96370 | 0.7496 | 2 | 0.2364 | 0.2344 | 0 | 1.74170 | 0.16270 | 0 | 6.28210 | 0.2389 | 2 | NA | NA | NA | NA |
01001020600 | 01 | 001 | 020600 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 3402 | 1456 | 1308 | 735 | 3402 | 21.60494 | 0.5199 | 0 | 134 | 1720 | 7.790698 | 0.54360 | 0 | 242 | 1032 | 23.44961 | 0.28010 | 0 | 62 | 276 | 22.46377 | 0.1035 | 0 | 304 | 1308 | 23.24159 | 0.14070 | 0 | 301 | 2151 | 13.993491 | 0.5510 | 0 | 355 | 3445 | 10.30479 | 0.3656 | 0 | 386 | 11.34627 | 0.4232 | 0 | 931 | 27.36626 | 0.7200 | 0 | 440 | 2439 | 18.04018 | 0.6912 | 0 | 143 | 924 | 15.476190 | 0.52900 | 0 | 4 | 3254 | 0.1229256 | 0.19840 | 0 | 723 | 3402 | 21.252205 | 0.4519 | 0 | 1456 | 18 | 1.2362637 | 0.3507 | 0 | 433 | 29.739011 | 0.9468 | 1 | 16 | 1308 | 1.2232416 | 0.4493 | 0 | 28 | 1308 | 2.140673 | 0.2298 | 0 | 0 | 3402 | 0 | 0.364 | 0 | 2.12080 | 0.3951 | 0 | 2.56180 | 0.5288 | 0 | 0.4519 | 0.4477 | 0 | 2.3406 | 0.4048 | 1 | 7.47510 | 0.4314 | 1 | 3536 | 1464 | 1330 | 1279 | 3523 | 36.30429 | 0.8215 | 1 | 34 | 1223 | 2.780049 | 0.2378 | 0 | 321 | 1111 | 28.892889 | 0.75870 | 1 | 67 | 219 | 30.59361 | 0.2305 | 0 | 388 | 1330 | 29.17293 | 0.5075 | 0 | 306 | 2380 | 12.857143 | 0.6480 | 0 | 415 | 3496 | 11.870709 | 0.7535 | 1 | 547 | 15.469457 | 0.4760 | 0 | 982 | 27.77149 | 0.8327 | 1 | 729 | 2514 | 28.99761 | 0.9488 | 1 | 95 | 880 | 10.79545 | 0.3601 | 0 | 0 | 3394 | 0.000000 | 0.09479 | 0 | 985 | 3536 | 27.85633 | 0.4608 | 0 | 1464 | 0 | 0.0000000 | 0.1079 | 0 | 364 | 24.8633880 | 0.9300 | 1 | 0 | 1330 | 0.0000000 | 0.09796 | 0 | 17 | 1330 | 1.278196 | 0.1463 | 0 | 0 | 3536 | 0.000000 | 0.1831 | 0 | 2.9683 | 0.6434 | 2 | 2.71239 | 0.6156 | 2 | 0.4608 | 0.4569 | 0 | 1.46526 | 0.08976 | 1 | 7.60675 | 0.4440 | 5 | NA | NA | NA | NA |
01001020700 | 01 | 001 | 020700 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 2664 | 1254 | 1139 | 710 | 2664 | 26.65165 | 0.6328 | 0 | 29 | 1310 | 2.213741 | 0.05255 | 0 | 134 | 710 | 18.87324 | 0.13890 | 0 | 187 | 429 | 43.58974 | 0.4709 | 0 | 321 | 1139 | 28.18262 | 0.28130 | 0 | 396 | 1852 | 21.382289 | 0.7478 | 0 | 345 | 2878 | 11.98749 | 0.4459 | 0 | 389 | 14.60210 | 0.6417 | 0 | 599 | 22.48499 | 0.4007 | 0 | 510 | 2168 | 23.52399 | 0.8752 | 1 | 228 | 712 | 32.022472 | 0.87120 | 1 | 0 | 2480 | 0.0000000 | 0.09298 | 0 | 694 | 2664 | 26.051051 | 0.5138 | 0 | 1254 | 8 | 0.6379585 | 0.2931 | 0 | 460 | 36.682616 | 0.9714 | 1 | 0 | 1139 | 0.0000000 | 0.1238 | 0 | 125 | 1139 | 10.974539 | 0.7477 | 0 | 0 | 2664 | 0 | 0.364 | 0 | 2.16035 | 0.4069 | 0 | 2.88178 | 0.6997 | 2 | 0.5138 | 0.5090 | 0 | 2.5000 | 0.4882 | 1 | 8.05593 | 0.5185 | 3 | 3562 | 1313 | 1248 | 1370 | 3528 | 38.83220 | 0.8512 | 1 | 128 | 1562 | 8.194622 | 0.7935 | 1 | 168 | 844 | 19.905213 | 0.44510 | 0 | 237 | 404 | 58.66337 | 0.8359 | 1 | 405 | 1248 | 32.45192 | 0.6042 | 0 | 396 | 2211 | 17.910448 | 0.7857 | 1 | 444 | 3547 | 12.517620 | 0.7758 | 1 | 355 | 9.966311 | 0.1800 | 0 | 954 | 26.78271 | 0.7923 | 1 | 629 | 2593 | 24.25762 | 0.8730 | 1 | 171 | 797 | 21.45546 | 0.7186 | 0 | 0 | 3211 | 0.000000 | 0.09479 | 0 | 1009 | 3562 | 28.32678 | 0.4668 | 0 | 1313 | 14 | 1.0662605 | 0.3165 | 0 | 443 | 33.7395278 | 0.9663 | 1 | 73 | 1248 | 5.8493590 | 0.82110 | 1 | 17 | 1248 | 1.362180 | 0.1554 | 0 | 112 | 3562 | 3.144301 | 0.8514 | 1 | 3.8104 | 0.8569 | 4 | 2.65869 | 0.5847 | 2 | 0.4668 | 0.4629 | 0 | 3.11070 | 0.77140 | 3 | 10.04659 | 0.7851 | 9 | NA | NA | NA | NA |
We can now filter our data set to only keep the census tracts that have a null (NA) for pre10 projects, indicating there were no projects in the tract. We also only want to keep tracts with a project after 2010:
svi_divisional_lihtc20 <- svi_divisional_lihtc20 %>%
filter(is.na(pre10_lihtc_project_cnt)) %>%
filter(post10_lihtc_project_cnt >= 1) %>%
select(GEOID_2010_trt, pre10_lihtc_project_cnt, pre10_lihtc_project_dollars, post10_lihtc_project_cnt, post10_lihtc_project_dollars)
# View data
svi_divisional_lihtc20 %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt | pre10_lihtc_project_cnt | pre10_lihtc_project_dollars | post10_lihtc_project_cnt | post10_lihtc_project_dollars |
---|---|---|---|---|
34001001500 | NA | NA | 1 | 1497998 |
34001010600 | NA | NA | 1 | 1369830 |
34001011803 | NA | NA | 1 | 0 |
34003002200 | NA | NA | 1 | 0 |
34003007001 | NA | NA | 1 | 601714 |
34003013001 | NA | NA | 1 | 307351 |
svi_national_lihtc20 <- svi_national_lihtc20 %>%
filter(is.na(pre10_lihtc_project_cnt)) %>%
filter(post10_lihtc_project_cnt >= 1) %>%
select(GEOID_2010_trt, pre10_lihtc_project_cnt, pre10_lihtc_project_dollars, post10_lihtc_project_cnt, post10_lihtc_project_dollars)
# View data
svi_national_lihtc20 %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt | pre10_lihtc_project_cnt | pre10_lihtc_project_dollars | post10_lihtc_project_cnt | post10_lihtc_project_dollars |
---|---|---|---|---|
01003010500 | NA | NA | 1 | 481325 |
01003011601 | NA | NA | 1 | 887856 |
01017954600 | NA | NA | 2 | 950192 |
01021060101 | NA | NA | 1 | 812048 |
01039962600 | NA | NA | 1 | 434742 |
01043964900 | NA | NA | 1 | 1046201 |
Now we need to create our final data set:
# Filter SVI divisional data to remove all tracts that had a project in 2010 or before:
svi_divisional_lihtc <- svi_divisional %>%
filter(! GEOID_2010_trt %in% lihtc_projects10$fips2010)
# Merge SVI divisional data with post 2010 project data, create flag for projects (1 for tracts that have LIHTC project, 0 for those that do not):
svi_divisional_lihtc <- left_join(svi_divisional_lihtc,
svi_divisional_lihtc20,
join_by("GEOID_2010_trt" == "GEOID_2010_trt")) %>%
mutate(pre10_lihtc_project_cnt = replace_na(pre10_lihtc_project_cnt, 0),
post10_lihtc_project_cnt = replace_na(post10_lihtc_project_cnt, 0),
pre10_lihtc_project_dollars = replace_na(pre10_lihtc_project_dollars, 0),
post10_lihtc_project_dollars = replace_na(post10_lihtc_project_dollars, 0),
lihtc_flag = if_else(post10_lihtc_project_cnt >= 1, 1, 0))
# Finally, we want to filter our dataset to only have tracts that are eligible for the LIHTC program and that have SVI data:
svi_divisional_lihtc <- left_join(svi_divisional_lihtc, lihtc_eligible_flag,
join_by("GEOID_2010_trt" == "GEOID10")) %>%
filter(tolower(lihtc_eligibility) == "yes") %>%
filter(!is.na(F_TOTAL_10)) %>%
filter(!is.na(F_TOTAL_20))
# View data
svi_divisional_lihtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt | FIPS_st | FIPS_county | FIPS_tract | state | state_name | county | region_number | region | division_number | division | E_TOTPOP_10 | E_HU_10 | E_HH_10 | E_POV150_10 | ET_POVSTATUS_10 | EP_POV150_10 | EPL_POV150_10 | F_POV150_10 | E_UNEMP_10 | ET_EMPSTATUS_10 | EP_UNEMP_10 | EPL_UNEMP_10 | F_UNEMP_10 | E_HBURD_OWN_10 | ET_HOUSINGCOST_OWN_10 | EP_HBURD_OWN_10 | EPL_HBURD_OWN_10 | F_HBURD_OWN_10 | E_HBURD_RENT_10 | ET_HOUSINGCOST_RENT_10 | EP_HBURD_RENT_10 | EPL_HBURD_RENT_10 | F_HBURD_RENT_10 | E_HBURD_10 | ET_HOUSINGCOST_10 | EP_HBURD_10 | EPL_HBURD_10 | F_HBURD_10 | E_NOHSDP_10 | ET_EDSTATUS_10 | EP_NOHSDP_10 | EPL_NOHSDP_10 | F_NOHSDP_10 | E_UNINSUR_12 | ET_INSURSTATUS_12 | EP_UNINSUR_12 | EPL_UNINSUR_12 | F_UNINSUR_12 | E_AGE65_10 | EP_AGE65_10 | EPL_AGE65_10 | F_AGE65_10 | E_AGE17_10 | EP_AGE17_10 | EPL_AGE17_10 | F_AGE17_10 | E_DISABL_12 | ET_DISABLSTATUS_12 | EP_DISABL_12 | EPL_DISABL_12 | F_DISABL_12 | E_SNGPNT_10 | ET_FAMILIES_10 | EP_SNGPNT_10 | EPL_SNGPNT_10 | F_SNGPNT_10 | E_LIMENG_10 | ET_POPAGE5UP_10 | EP_LIMENG_10 | EPL_LIMENG_10 | F_LIMENG_10 | E_MINRTY_10 | ET_POPETHRACE_10 | EP_MINRTY_10 | EPL_MINRTY_10 | F_MINRTY_10 | E_STRHU_10 | E_MUNIT_10 | EP_MUNIT_10 | EPL_MUNIT_10 | F_MUNIT_10 | E_MOBILE_10 | EP_MOBILE_10 | EPL_MOBILE_10 | F_MOBILE_10 | E_CROWD_10 | ET_OCCUPANTS_10 | EP_CROWD_10 | EPL_CROWD_10 | F_CROWD_10 | E_NOVEH_10 | ET_KNOWNVEH_10 | EP_NOVEH_10 | EPL_NOVEH_10 | F_NOVEH_10 | E_GROUPQ_10 | ET_HHTYPE_10 | EP_GROUPQ_10 | EPL_GROUPQ_10 | F_GROUPQ_10 | SPL_THEME1_10 | RPL_THEME1_10 | F_THEME1_10 | SPL_THEME2_10 | RPL_THEME2_10 | F_THEME2_10 | SPL_THEME3_10 | RPL_THEME3_10 | F_THEME3_10 | SPL_THEME4_10 | RPL_THEME4_10 | F_THEME4_10 | SPL_THEMES_10 | RPL_THEMES_10 | F_TOTAL_10 | E_TOTPOP_20 | E_HU_20 | E_HH_20 | E_POV150_20 | ET_POVSTATUS_20 | EP_POV150_20 | EPL_POV150_20 | F_POV150_20 | E_UNEMP_20 | ET_EMPSTATUS_20 | EP_UNEMP_20 | EPL_UNEMP_20 | F_UNEMP_20 | E_HBURD_OWN_20 | ET_HOUSINGCOST_OWN_20 | EP_HBURD_OWN_20 | EPL_HBURD_OWN_20 | F_HBURD_OWN_20 | E_HBURD_RENT_20 | ET_HOUSINGCOST_RENT_20 | EP_HBURD_RENT_20 | EPL_HBURD_RENT_20 | F_HBURD_RENT_20 | E_HBURD_20 | ET_HOUSINGCOST_20 | EP_HBURD_20 | EPL_HBURD_20 | F_HBURD_20 | E_NOHSDP_20 | ET_EDSTATUS_20 | EP_NOHSDP_20 | EPL_NOHSDP_20 | F_NOHSDP_20 | E_UNINSUR_20 | ET_INSURSTATUS_20 | EP_UNINSUR_20 | EPL_UNINSUR_20 | F_UNINSUR_20 | E_AGE65_20 | EP_AGE65_20 | EPL_AGE65_20 | F_AGE65_20 | E_AGE17_20 | EP_AGE17_20 | EPL_AGE17_20 | F_AGE17_20 | E_DISABL_20 | ET_DISABLSTATUS_20 | EP_DISABL_20 | EPL_DISABL_20 | F_DISABL_20 | E_SNGPNT_20 | ET_FAMILIES_20 | EP_SNGPNT_20 | EPL_SNGPNT_20 | F_SNGPNT_20 | E_LIMENG_20 | ET_POPAGE5UP_20 | EP_LIMENG_20 | EPL_LIMENG_20 | F_LIMENG_20 | E_MINRTY_20 | ET_POPETHRACE_20 | EP_MINRTY_20 | EPL_MINRTY_20 | F_MINRTY_20 | E_STRHU_20 | E_MUNIT_20 | EP_MUNIT_20 | EPL_MUNIT_20 | F_MUNIT_20 | E_MOBILE_20 | EP_MOBILE_20 | EPL_MOBILE_20 | F_MOBILE_20 | E_CROWD_20 | ET_OCCUPANTS_20 | EP_CROWD_20 | EPL_CROWD_20 | F_CROWD_20 | E_NOVEH_20 | ET_KNOWNVEH_20 | EP_NOVEH_20 | EPL_NOVEH_20 | F_NOVEH_20 | E_GROUPQ_20 | ET_HHTYPE_20 | EP_GROUPQ_20 | EPL_GROUPQ_20 | F_GROUPQ_20 | SPL_THEME1_20 | RPL_THEME1_20 | F_THEME1_20 | SPL_THEME2_20 | RPL_THEME2_20 | F_THEME2_20 | SPL_THEME3_20 | RPL_THEME3_20 | F_THEME3_20 | SPL_THEME4_20 | RPL_THEME4_20 | F_THEME4_20 | SPL_THEMES_20 | RPL_THEMES_20 | F_TOTAL_20 | pre10_lihtc_project_cnt | pre10_lihtc_project_dollars | post10_lihtc_project_cnt | post10_lihtc_project_dollars | lihtc_flag | lihtc_eligibility |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
34001001400 | 34 | 001 | 001400 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 3736 | 1893 | 1503 | 2135 | 3736 | 57.14668 | 0.9592 | 1 | 411 | 1635 | 25.137615 | 0.9866 | 1 | 267 | 401 | 66.58354 | 0.9617 | 1 | 715 | 1102 | 64.88203 | 0.8844 | 1 | 982 | 1503 | 65.33599 | 0.9764 | 1 | 511 | 1696 | 30.129717 | 0.90050 | 1 | 527 | 4199 | 12.5506073 | 0.672800 | 0 | 269 | 7.200214 | 0.115100 | 0 | 1598 | 42.77302 | 0.9935 | 1 | 345 | 2252 | 15.319716 | 0.63090 | 0 | 787 | 941 | 83.63443 | 0.9990 | 1 | 63 | 3192 | 1.973684 | 0.54480 | 0 | 3463 | 3736 | 92.69272 | 0.8905 | 1 | 1893 | 427 | 22.556788 | 0.7770 | 1 | 0 | 0.000000 | 0.3251 | 0 | 22 | 1503 | 1.463739 | 0.5339 | 0 | 705 | 1503 | 46.90619 | 0.85330 | 1 | 0 | 3736 | 0.000000 | 0.3512 | 0 | 4.495500 | 0.9585 | 4 | 3.283300 | 0.8640 | 2 | 0.8905 | 0.8818 | 1 | 2.84050 | 0.66710 | 2 | 11.509800 | 0.9048 | 9 | 3812 | 1724 | 1549 | 2291 | 3754 | 61.028236 | 0.9760 | 1 | 380 | 1547 | 24.563672 | 0.9934 | 1 | 117 | 240 | 48.75000 | 0.9237 | 1 | 753 | 1309 | 57.52483 | 0.7816 | 1 | 870 | 1549 | 56.16527 | 0.9326 | 1 | 472 | 1913 | 24.673288 | 0.8987 | 1 | 294 | 3802 | 7.7327722 | 0.7558 | 1 | 363 | 9.52256 | 0.123100 | 0 | 1463 | 38.37880 | 0.9885 | 1 | 508 | 2339.000 | 21.718683 | 0.85640 | 1 | 564 | 948.000 | 59.49367 | 0.9910 | 1 | 201 | 3159 | 6.3627730 | 0.7613 | 1 | 3389 | 3812.000 | 88.90346 | 0.8683 | 1 | 1724 | 571 | 33.1206497 | 0.8294 | 1 | 0 | 0 | 0.3216 | 0 | 83 | 1549 | 5.358296 | 0.7754 | 1 | 661 | 1549.000 | 42.672692 | 0.8448 | 1 | 10 | 3812 | 0.2623295 | 0.4739 | 0 | 4.5565 | 0.9673 | 5 | 3.720300 | 0.9522 | 4 | 0.8683 | 0.8605 | 1 | 3.2451 | 0.81590 | 3 | 12.390200 | 0.9595 | 13 | 0 | 0 | 0 | 0 | 0 | Yes |
34001001500 | 34 | 001 | 001500 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 1074 | 901 | 752 | 656 | 1074 | 61.08007 | 0.9700 | 1 | 43 | 270 | 15.925926 | 0.9242 | 1 | 30 | 70 | 42.85714 | 0.7276 | 0 | 366 | 682 | 53.66569 | 0.6910 | 0 | 396 | 752 | 52.65957 | 0.8458 | 1 | 266 | 921 | 28.881650 | 0.88860 | 1 | 121 | 1064 | 11.3721805 | 0.613100 | 0 | 385 | 35.847300 | 0.990200 | 1 | 129 | 12.01117 | 0.0617 | 0 | 321 | 993 | 32.326284 | 0.98460 | 1 | 62 | 195 | 31.79487 | 0.8408 | 1 | 125 | 1050 | 11.904762 | 0.85620 | 1 | 965 | 1074 | 89.85102 | 0.8717 | 1 | 901 | 636 | 70.588235 | 0.9304 | 1 | 0 | 0.000000 | 0.3251 | 0 | 10 | 752 | 1.329787 | 0.5133 | 0 | 626 | 752 | 83.24468 | 0.98880 | 1 | 0 | 1074 | 0.000000 | 0.3512 | 0 | 4.241700 | 0.9134 | 4 | 3.733500 | 0.9515 | 4 | 0.8717 | 0.8632 | 1 | 3.10880 | 0.77090 | 2 | 11.955700 | 0.9362 | 11 | 1601 | 976 | 810 | 1001 | 1601 | 62.523423 | 0.9797 | 1 | 204 | 563 | 36.234458 | 0.9989 | 1 | 74 | 110 | 67.27273 | 0.9848 | 1 | 224 | 700 | 32.00000 | 0.2097 | 0 | 298 | 810 | 36.79012 | 0.6089 | 0 | 379 | 1145 | 33.100437 | 0.9610 | 1 | 272 | 1601 | 16.9893816 | 0.9572 | 1 | 451 | 28.16989 | 0.936300 | 1 | 251 | 15.67770 | 0.1835 | 0 | 411 | 1350.000 | 30.444444 | 0.97330 | 1 | 196 | 446.000 | 43.94619 | 0.9511 | 1 | 220 | 1532 | 14.3603133 | 0.8929 | 1 | 1435 | 1601.000 | 89.63148 | 0.8738 | 1 | 976 | 451 | 46.2090164 | 0.8742 | 1 | 0 | 0 | 0.3216 | 0 | 24 | 810 | 2.962963 | 0.6412 | 0 | 546 | 810.000 | 67.407407 | 0.9401 | 1 | 15 | 1601 | 0.9369144 | 0.6832 | 0 | 4.5057 | 0.9617 | 4 | 3.937100 | 0.9752 | 4 | 0.8738 | 0.8659 | 1 | 3.4603 | 0.87740 | 2 | 12.776900 | 0.9705 | 11 | 0 | 0 | 1 | 1497998 | 1 | Yes |
34001002400 | 34 | 001 | 002400 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 3129 | 1759 | 1375 | 1916 | 3129 | 61.23362 | 0.9705 | 1 | 205 | 1075 | 19.069767 | 0.9574 | 1 | 28 | 60 | 46.66667 | 0.7987 | 1 | 670 | 1315 | 50.95057 | 0.6297 | 0 | 698 | 1375 | 50.76364 | 0.8102 | 1 | 632 | 2059 | 30.694512 | 0.90660 | 1 | 461 | 2365 | 19.4926004 | 0.873700 | 1 | 539 | 17.225951 | 0.744100 | 0 | 850 | 27.16523 | 0.7907 | 1 | 575 | 1736 | 33.122120 | 0.98650 | 1 | 237 | 594 | 39.89899 | 0.9035 | 1 | 312 | 2663 | 11.716110 | 0.85490 | 1 | 2357 | 3129 | 75.32758 | 0.8038 | 1 | 1759 | 1091 | 62.023877 | 0.9176 | 1 | 29 | 1.648664 | 0.7742 | 1 | 57 | 1375 | 4.145454 | 0.7529 | 1 | 696 | 1375 | 50.61818 | 0.87140 | 1 | 209 | 3129 | 6.679450 | 0.9003 | 1 | 4.518400 | 0.9608 | 5 | 4.279700 | 0.9831 | 4 | 0.8038 | 0.7960 | 1 | 4.21640 | 0.98320 | 5 | 13.818300 | 0.9835 | 15 | 2614 | 1726 | 1217 | 1579 | 2612 | 60.451761 | 0.9744 | 1 | 290 | 1171 | 24.765158 | 0.9939 | 1 | 69 | 127 | 54.33071 | 0.9521 | 1 | 538 | 1090 | 49.35780 | 0.5970 | 0 | 607 | 1217 | 49.87675 | 0.8624 | 1 | 697 | 1998 | 34.884885 | 0.9695 | 1 | 551 | 2614 | 21.0788064 | 0.9797 | 1 | 516 | 19.73986 | 0.679400 | 0 | 503 | 19.24254 | 0.3999 | 0 | 576 | 2111.000 | 27.285647 | 0.95060 | 1 | 257 | 567.000 | 45.32628 | 0.9571 | 1 | 556 | 2368 | 23.4797297 | 0.9570 | 1 | 2029 | 2614.000 | 77.62050 | 0.8058 | 1 | 1726 | 1166 | 67.5550406 | 0.9204 | 1 | 0 | 0 | 0.3216 | 0 | 115 | 1217 | 9.449466 | 0.8840 | 1 | 673 | 1217.000 | 55.299918 | 0.8978 | 1 | 223 | 2614 | 8.5309870 | 0.9307 | 1 | 4.7799 | 0.9845 | 5 | 3.944000 | 0.9756 | 3 | 0.8058 | 0.7985 | 1 | 3.9545 | 0.96510 | 4 | 13.484200 | 0.9845 | 13 | 0 | 0 | 0 | 0 | 0 | Yes |
34003015400 | 34 | 003 | 015400 | NJ | New Jersey | Bergen County | 1 | Northeast Region | 2 | Middle Atlantic Division | 5086 | 2258 | 2100 | 1485 | 5063 | 29.33044 | 0.7447 | 0 | 195 | 2873 | 6.787330 | 0.4938 | 0 | 223 | 478 | 46.65272 | 0.7984 | 1 | 876 | 1622 | 54.00740 | 0.6974 | 0 | 1099 | 2100 | 52.33333 | 0.8405 | 1 | 640 | 3682 | 17.381858 | 0.70160 | 0 | 1579 | 6178 | 25.5584331 | 0.949900 | 1 | 603 | 11.856075 | 0.377400 | 0 | 961 | 18.89501 | 0.2410 | 0 | 534 | 5000 | 10.680000 | 0.31600 | 0 | 254 | 1232 | 20.61688 | 0.6975 | 0 | 681 | 4763 | 14.297712 | 0.88510 | 1 | 3916 | 5086 | 76.99567 | 0.8096 | 1 | 2258 | 1028 | 45.527015 | 0.8820 | 1 | 0 | 0.000000 | 0.3251 | 0 | 28 | 2100 | 1.333333 | 0.5139 | 0 | 643 | 2100 | 30.61905 | 0.76370 | 1 | 57 | 5086 | 1.120724 | 0.7485 | 0 | 3.730500 | 0.8072 | 2 | 2.517000 | 0.5136 | 1 | 0.8096 | 0.8017 | 1 | 3.23320 | 0.81730 | 2 | 10.290300 | 0.7914 | 6 | 7543 | 3570 | 3054 | 1638 | 7543 | 21.715498 | 0.6364 | 0 | 320 | 4251 | 7.527641 | 0.7462 | 0 | 238 | 752 | 31.64894 | 0.6832 | 0 | 1211 | 2302 | 52.60643 | 0.6776 | 0 | 1449 | 3054 | 47.44597 | 0.8252 | 1 | 877 | 5631 | 15.574498 | 0.7611 | 1 | 1093 | 7543 | 14.4902559 | 0.9339 | 1 | 981 | 13.00544 | 0.282700 | 0 | 1174 | 15.56410 | 0.1785 | 0 | 756 | 6369.000 | 11.869995 | 0.37380 | 0 | 303 | 2013.000 | 15.05216 | 0.5737 | 0 | 970 | 7103 | 13.6562016 | 0.8846 | 1 | 5610 | 7543.000 | 74.37359 | 0.7916 | 1 | 3570 | 1871 | 52.4089636 | 0.8898 | 1 | 0 | 0 | 0.3216 | 0 | 258 | 3054 | 8.447937 | 0.8637 | 1 | 301 | 3054.000 | 9.855927 | 0.5207 | 0 | 15 | 7543 | 0.1988599 | 0.4315 | 0 | 3.9028 | 0.8603 | 3 | 2.293300 | 0.3701 | 1 | 0.7916 | 0.7845 | 1 | 3.0273 | 0.73680 | 2 | 10.015000 | 0.7805 | 7 | 0 | 0 | 0 | 0 | 0 | Yes |
34003018100 | 34 | 003 | 018100 | NJ | New Jersey | Bergen County | 1 | Northeast Region | 2 | Middle Atlantic Division | 6907 | 2665 | 2569 | 1865 | 6863 | 27.17470 | 0.7140 | 0 | 242 | 3781 | 6.400423 | 0.4509 | 0 | 434 | 834 | 52.03837 | 0.8694 | 1 | 1123 | 1735 | 64.72622 | 0.8830 | 1 | 1557 | 2569 | 60.60724 | 0.9450 | 1 | 1521 | 4649 | 32.716713 | 0.92270 | 1 | 2703 | 7124 | 37.9421673 | 0.992200 | 1 | 1024 | 14.825539 | 0.598800 | 0 | 1336 | 19.34270 | 0.2674 | 0 | 452 | 5848 | 7.729138 | 0.11920 | 0 | 363 | 1614 | 22.49071 | 0.7280 | 0 | 1324 | 6571 | 20.149140 | 0.93510 | 1 | 4209 | 6907 | 60.93818 | 0.7551 | 1 | 2665 | 517 | 19.399625 | 0.7487 | 0 | 0 | 0.000000 | 0.3251 | 0 | 136 | 2569 | 5.293889 | 0.7960 | 1 | 1043 | 2569 | 40.59945 | 0.82350 | 1 | 0 | 6907 | 0.000000 | 0.3512 | 0 | 4.024800 | 0.8697 | 3 | 2.648500 | 0.5885 | 1 | 0.7551 | 0.7477 | 1 | 3.04450 | 0.74620 | 2 | 10.472900 | 0.8112 | 7 | 7668 | 2912 | 2816 | 1803 | 7664 | 23.525574 | 0.6750 | 0 | 370 | 4727 | 7.827375 | 0.7646 | 1 | 441 | 819 | 53.84615 | 0.9501 | 1 | 1122 | 1997 | 56.18428 | 0.7544 | 1 | 1563 | 2816 | 55.50426 | 0.9274 | 1 | 1879 | 5775 | 32.536797 | 0.9576 | 1 | 1695 | 7668 | 22.1048513 | 0.9829 | 1 | 1041 | 13.57590 | 0.316600 | 0 | 1193 | 15.55816 | 0.1784 | 0 | 711 | 6474.819 | 10.981001 | 0.31250 | 0 | 197 | 1914.175 | 10.29164 | 0.3928 | 0 | 2045 | 7161 | 28.5574640 | 0.9756 | 1 | 5637 | 7667.630 | 73.51685 | 0.7875 | 1 | 2912 | 806 | 27.6785714 | 0.7973 | 1 | 0 | 0 | 0.3216 | 0 | 150 | 2816 | 5.326704 | 0.7742 | 1 | 833 | 2816.042 | 29.580522 | 0.7679 | 1 | 10 | 7668 | 0.1304121 | 0.3642 | 0 | 4.3075 | 0.9336 | 4 | 2.175900 | 0.2971 | 1 | 0.7875 | 0.7803 | 1 | 3.0252 | 0.73590 | 3 | 10.296100 | 0.8061 | 9 | 0 | 0 | 0 | 0 | 0 | Yes |
34005702101 | 34 | 005 | 702101 | NJ | New Jersey | Burlington County | 1 | Northeast Region | 2 | Middle Atlantic Division | 1637 | 702 | 483 | 445 | 1637 | 27.18387 | 0.7142 | 0 | 63 | 456 | 13.815789 | 0.8857 | 1 | 0 | 0 | NaN | NA | NA | 222 | 483 | 45.96273 | 0.5037 | 0 | 222 | 483 | 45.96273 | 0.7085 | 0 | 31 | 903 | 3.433001 | 0.08742 | 0 | 14 | 1965 | 0.7124682 | 0.008765 | 0 | 0 | 0.000000 | 0.002836 | 0 | 696 | 42.51680 | 0.9928 | 1 | 62 | 898 | 6.904232 | 0.08018 | 0 | 103 | 452 | 22.78761 | 0.7331 | 0 | 0 | 1379 | 0.000000 | 0.07335 | 0 | 248 | 1637 | 15.14966 | 0.4224 | 0 | 702 | 25 | 3.561254 | 0.4247 | 0 | 0 | 0.000000 | 0.3251 | 0 | 0 | 483 | 0.000000 | 0.1459 | 0 | 0 | 483 | 0.00000 | 0.01044 | 0 | 0 | 1637 | 0.000000 | 0.3512 | 0 | 2.404585 | 0.4890 | 1 | 1.882266 | 0.1557 | 1 | 0.4224 | 0.4183 | 0 | 1.25734 | 0.03853 | 0 | 5.966591 | 0.2021 | 2 | 3997 | 1271 | 1235 | 304 | 3996 | 7.607608 | 0.1919 | 0 | 46 | 901 | 5.105438 | 0.5252 | 0 | 0 | 0 | NaN | NA | NA | 731 | 1235 | 59.19028 | 0.8107 | 1 | 731 | 1235 | 59.19028 | 0.9566 | 1 | 49 | 1973 | 2.483528 | 0.0993 | 0 | 27 | 3057 | 0.8832188 | 0.0568 | 0 | 0 | 0.00000 | 0.001592 | 0 | 1651 | 41.30598 | 0.9924 | 1 | 58 | 1412.011 | 4.107616 | 0.01556 | 0 | 91 | 1092.793 | 8.32729 | 0.3046 | 0 | 32 | 3347 | 0.9560801 | 0.3989 | 0 | 1411 | 3996.883 | 35.30251 | 0.5750 | 0 | 1271 | 10 | 0.7867821 | 0.2414 | 0 | 0 | 0 | 0.3216 | 0 | 27 | 1235 | 2.186235 | 0.5699 | 0 | 11 | 1234.974 | 0.890707 | 0.0533 | 0 | 0 | 3997 | 0.0000000 | 0.1517 | 0 | 1.8298 | 0.3066 | 1 | 1.713052 | 0.1034 | 1 | 0.5750 | 0.5698 | 0 | 1.3379 | 0.06021 | 0 | 5.455752 | 0.1329 | 2 | 0 | 0 | 0 | 0 | 0 | Yes |
# Filter SVI national data to remove all tracts that had a project in 2010 or before:
svi_national_lihtc <- svi_national %>%
filter(! GEOID_2010_trt %in% lihtc_projects10$fips2010)
# Merge SVI national data with post 2010 project data, create flag for projects (1 for tracts that have LIHTC project, 0 for those that do not):
svi_national_lihtc <- left_join(svi_national_lihtc,
svi_national_lihtc20,
join_by("GEOID_2010_trt" == "GEOID_2010_trt")) %>%
mutate(pre10_lihtc_project_cnt = replace_na(pre10_lihtc_project_cnt, 0),
post10_lihtc_project_cnt = replace_na(post10_lihtc_project_cnt, 0),
pre10_lihtc_project_dollars = replace_na(pre10_lihtc_project_dollars, 0),
post10_lihtc_project_dollars = replace_na(post10_lihtc_project_dollars, 0),
lihtc_flag = if_else(post10_lihtc_project_cnt >= 1, 1, 0))
# Finally, we want to filter our dataset to only have tracts that are eligible for the LIHTC program and that have SVI data:
svi_national_lihtc <- left_join(svi_national_lihtc, lihtc_eligible_flag,
join_by("GEOID_2010_trt" == "GEOID10")) %>%
filter(tolower(lihtc_eligibility) == "yes") %>%
filter(!is.na(F_TOTAL_10)) %>%
filter(!is.na(F_TOTAL_20))
# View data
svi_national_lihtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt | FIPS_st | FIPS_county | FIPS_tract | state | state_name | county | region_number | region | division_number | division | E_TOTPOP_10 | E_HU_10 | E_HH_10 | E_POV150_10 | ET_POVSTATUS_10 | EP_POV150_10 | EPL_POV150_10 | F_POV150_10 | E_UNEMP_10 | ET_EMPSTATUS_10 | EP_UNEMP_10 | EPL_UNEMP_10 | F_UNEMP_10 | E_HBURD_OWN_10 | ET_HOUSINGCOST_OWN_10 | EP_HBURD_OWN_10 | EPL_HBURD_OWN_10 | F_HBURD_OWN_10 | E_HBURD_RENT_10 | ET_HOUSINGCOST_RENT_10 | EP_HBURD_RENT_10 | EPL_HBURD_RENT_10 | F_HBURD_RENT_10 | E_HBURD_10 | ET_HOUSINGCOST_10 | EP_HBURD_10 | EPL_HBURD_10 | F_HBURD_10 | E_NOHSDP_10 | ET_EDSTATUS_10 | EP_NOHSDP_10 | EPL_NOHSDP_10 | F_NOHSDP_10 | E_UNINSUR_12 | ET_INSURSTATUS_12 | EP_UNINSUR_12 | EPL_UNINSUR_12 | F_UNINSUR_12 | E_AGE65_10 | EP_AGE65_10 | EPL_AGE65_10 | F_AGE65_10 | E_AGE17_10 | EP_AGE17_10 | EPL_AGE17_10 | F_AGE17_10 | E_DISABL_12 | ET_DISABLSTATUS_12 | EP_DISABL_12 | EPL_DISABL_12 | F_DISABL_12 | E_SNGPNT_10 | ET_FAMILIES_10 | EP_SNGPNT_10 | EPL_SNGPNT_10 | F_SNGPNT_10 | E_LIMENG_10 | ET_POPAGE5UP_10 | EP_LIMENG_10 | EPL_LIMENG_10 | F_LIMENG_10 | E_MINRTY_10 | ET_POPETHRACE_10 | EP_MINRTY_10 | EPL_MINRTY_10 | F_MINRTY_10 | E_STRHU_10 | E_MUNIT_10 | EP_MUNIT_10 | EPL_MUNIT_10 | F_MUNIT_10 | E_MOBILE_10 | EP_MOBILE_10 | EPL_MOBILE_10 | F_MOBILE_10 | E_CROWD_10 | ET_OCCUPANTS_10 | EP_CROWD_10 | EPL_CROWD_10 | F_CROWD_10 | E_NOVEH_10 | ET_KNOWNVEH_10 | EP_NOVEH_10 | EPL_NOVEH_10 | F_NOVEH_10 | E_GROUPQ_10 | ET_HHTYPE_10 | EP_GROUPQ_10 | EPL_GROUPQ_10 | F_GROUPQ_10 | SPL_THEME1_10 | RPL_THEME1_10 | F_THEME1_10 | SPL_THEME2_10 | RPL_THEME2_10 | F_THEME2_10 | SPL_THEME3_10 | RPL_THEME3_10 | F_THEME3_10 | SPL_THEME4_10 | RPL_THEME4_10 | F_THEME4_10 | SPL_THEMES_10 | RPL_THEMES_10 | F_TOTAL_10 | E_TOTPOP_20 | E_HU_20 | E_HH_20 | E_POV150_20 | ET_POVSTATUS_20 | EP_POV150_20 | EPL_POV150_20 | F_POV150_20 | E_UNEMP_20 | ET_EMPSTATUS_20 | EP_UNEMP_20 | EPL_UNEMP_20 | F_UNEMP_20 | E_HBURD_OWN_20 | ET_HOUSINGCOST_OWN_20 | EP_HBURD_OWN_20 | EPL_HBURD_OWN_20 | F_HBURD_OWN_20 | E_HBURD_RENT_20 | ET_HOUSINGCOST_RENT_20 | EP_HBURD_RENT_20 | EPL_HBURD_RENT_20 | F_HBURD_RENT_20 | E_HBURD_20 | ET_HOUSINGCOST_20 | EP_HBURD_20 | EPL_HBURD_20 | F_HBURD_20 | E_NOHSDP_20 | ET_EDSTATUS_20 | EP_NOHSDP_20 | EPL_NOHSDP_20 | F_NOHSDP_20 | E_UNINSUR_20 | ET_INSURSTATUS_20 | EP_UNINSUR_20 | EPL_UNINSUR_20 | F_UNINSUR_20 | E_AGE65_20 | EP_AGE65_20 | EPL_AGE65_20 | F_AGE65_20 | E_AGE17_20 | EP_AGE17_20 | EPL_AGE17_20 | F_AGE17_20 | E_DISABL_20 | ET_DISABLSTATUS_20 | EP_DISABL_20 | EPL_DISABL_20 | F_DISABL_20 | E_SNGPNT_20 | ET_FAMILIES_20 | EP_SNGPNT_20 | EPL_SNGPNT_20 | F_SNGPNT_20 | E_LIMENG_20 | ET_POPAGE5UP_20 | EP_LIMENG_20 | EPL_LIMENG_20 | F_LIMENG_20 | E_MINRTY_20 | ET_POPETHRACE_20 | EP_MINRTY_20 | EPL_MINRTY_20 | F_MINRTY_20 | E_STRHU_20 | E_MUNIT_20 | EP_MUNIT_20 | EPL_MUNIT_20 | F_MUNIT_20 | E_MOBILE_20 | EP_MOBILE_20 | EPL_MOBILE_20 | F_MOBILE_20 | E_CROWD_20 | ET_OCCUPANTS_20 | EP_CROWD_20 | EPL_CROWD_20 | F_CROWD_20 | E_NOVEH_20 | ET_KNOWNVEH_20 | EP_NOVEH_20 | EPL_NOVEH_20 | F_NOVEH_20 | E_GROUPQ_20 | ET_HHTYPE_20 | EP_GROUPQ_20 | EPL_GROUPQ_20 | F_GROUPQ_20 | SPL_THEME1_20 | RPL_THEME1_20 | F_THEME1_20 | SPL_THEME2_20 | RPL_THEME2_20 | F_THEME2_20 | SPL_THEME3_20 | RPL_THEME3_20 | F_THEME3_20 | SPL_THEME4_20 | RPL_THEME4_20 | F_THEME4_20 | SPL_THEMES_20 | RPL_THEMES_20 | F_TOTAL_20 | pre10_lihtc_project_cnt | pre10_lihtc_project_dollars | post10_lihtc_project_cnt | post10_lihtc_project_dollars | lihtc_flag | lihtc_eligibility |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
01005950700 | 01 | 005 | 950700 | AL | Alabama | Barbour County | 3 | South Region | 6 | East South Central Division | 1753 | 687 | 563 | 615 | 1628 | 37.77641 | 0.8088 | 1 | 17 | 667 | 2.548726 | 0.06941 | 0 | 41 | 376 | 10.90426 | 0.01945 | 0 | 62 | 187 | 33.15508 | 0.2464 | 0 | 103 | 563 | 18.29485 | 0.04875 | 0 | 264 | 1208 | 21.85430 | 0.7570 | 1 | 201 | 1527 | 13.163065 | 0.4991 | 0 | 368 | 20.992584 | 0.89510 | 1 | 462 | 26.354820 | 0.66130 | 0 | 211 | 1085 | 19.44700 | 0.7505 | 1 | 107 | 399 | 26.81704 | 0.8048 | 1 | 0 | 1628 | 0.000000 | 0.09298 | 0 | 861 | 1753 | 49.11580 | 0.7101 | 0 | 687 | 17 | 2.474527 | 0.4324 | 0 | 38 | 5.5312955 | 0.6970 | 0 | 3 | 563 | 0.5328597 | 0.3037 | 0 | 19 | 563 | 3.374778 | 0.3529 | 0 | 233 | 1753 | 13.29150 | 0.9517 | 1 | 2.18306 | 0.4137 | 2 | 3.20468 | 0.8377 | 3 | 0.7101 | 0.7035 | 0 | 2.7377 | 0.6100 | 1 | 8.83554 | 0.6264 | 6 | 1527 | 691 | 595 | 565 | 1365 | 41.39194 | 0.8765 | 1 | 37 | 572 | 6.468532 | 0.6776 | 0 | 70 | 376 | 18.617021 | 0.38590 | 0 | 92 | 219 | 42.00913 | 0.4736 | 0 | 162 | 595 | 27.22689 | 0.4454 | 0 | 280 | 1114 | 25.13465 | 0.8942 | 1 | 105 | 1378 | 7.619739 | 0.5505 | 0 | 383 | 25.081860 | 0.88450 | 1 | 337 | 22.069417 | 0.51380 | 0 | 237 | 1041.0000 | 22.76657 | 0.8360 | 1 | 144 | 413.0000 | 34.86683 | 0.9114 | 1 | 11 | 1466 | 0.7503411 | 0.40700 | 0 | 711 | 1527.0000 | 46.56189 | 0.6441 | 0 | 691 | 13 | 1.881331 | 0.3740 | 0 | 37 | 5.3545586 | 0.7152 | 0 | 0 | 595 | 0.0000000 | 0.09796 | 0 | 115 | 595.0000 | 19.327731 | 0.8859 | 1 | 149 | 1527 | 9.757695 | 0.9470 | 1 | 3.4442 | 0.7707 | 2 | 3.55270 | 0.9403 | 3 | 0.6441 | 0.6387 | 0 | 3.02006 | 0.7337 | 2 | 10.66106 | 0.8537 | 7 | 0 | 0 | 0 | 0 | 0 | Yes |
01011952100 | 01 | 011 | 952100 | AL | Alabama | Bullock County | 3 | South Region | 6 | East South Central Division | 1652 | 796 | 554 | 564 | 1652 | 34.14044 | 0.7613 | 1 | 46 | 816 | 5.637255 | 0.33630 | 0 | 96 | 458 | 20.96070 | 0.19930 | 0 | 62 | 96 | 64.58333 | 0.8917 | 1 | 158 | 554 | 28.51986 | 0.29220 | 0 | 271 | 1076 | 25.18587 | 0.8163 | 1 | 155 | 1663 | 9.320505 | 0.3183 | 0 | 199 | 12.046005 | 0.47180 | 0 | 420 | 25.423729 | 0.60240 | 0 | 327 | 1279 | 25.56685 | 0.9151 | 1 | 137 | 375 | 36.53333 | 0.9108 | 1 | 0 | 1590 | 0.000000 | 0.09298 | 0 | 1428 | 1652 | 86.44068 | 0.8939 | 1 | 796 | 0 | 0.000000 | 0.1224 | 0 | 384 | 48.2412060 | 0.9897 | 1 | 19 | 554 | 3.4296029 | 0.7145 | 0 | 45 | 554 | 8.122744 | 0.6556 | 0 | 0 | 1652 | 0.00000 | 0.3640 | 0 | 2.52440 | 0.5138 | 2 | 2.99308 | 0.7515 | 2 | 0.8939 | 0.8856 | 1 | 2.8462 | 0.6637 | 1 | 9.25758 | 0.6790 | 6 | 1382 | 748 | 549 | 742 | 1382 | 53.69030 | 0.9560 | 1 | 40 | 511 | 7.827789 | 0.7730 | 1 | 110 | 402 | 27.363184 | 0.71780 | 0 | 45 | 147 | 30.61224 | 0.2307 | 0 | 155 | 549 | 28.23315 | 0.4773 | 0 | 181 | 905 | 20.00000 | 0.8253 | 1 | 232 | 1382 | 16.787265 | 0.8813 | 1 | 164 | 11.866860 | 0.27170 | 0 | 250 | 18.089725 | 0.26290 | 0 | 258 | 1132.0000 | 22.79152 | 0.8368 | 1 | 99 | 279.0000 | 35.48387 | 0.9162 | 1 | 33 | 1275 | 2.5882353 | 0.64520 | 0 | 1347 | 1382.0000 | 97.46744 | 0.9681 | 1 | 748 | 0 | 0.000000 | 0.1079 | 0 | 375 | 50.1336898 | 0.9922 | 1 | 0 | 549 | 0.0000000 | 0.09796 | 0 | 37 | 549.0000 | 6.739526 | 0.6039 | 0 | 0 | 1382 | 0.000000 | 0.1831 | 0 | 3.9129 | 0.8785 | 4 | 2.93280 | 0.7342 | 2 | 0.9681 | 0.9599 | 1 | 1.98506 | 0.2471 | 1 | 9.79886 | 0.7570 | 8 | 0 | 0 | 0 | 0 | 0 | Yes |
01015000300 | 01 | 015 | 000300 | AL | Alabama | Calhoun County | 3 | South Region | 6 | East South Central Division | 3074 | 1635 | 1330 | 1904 | 3067 | 62.08021 | 0.9710 | 1 | 293 | 1362 | 21.512482 | 0.96630 | 1 | 180 | 513 | 35.08772 | 0.65450 | 0 | 383 | 817 | 46.87882 | 0.5504 | 0 | 563 | 1330 | 42.33083 | 0.70280 | 0 | 720 | 2127 | 33.85049 | 0.9148 | 1 | 628 | 2835 | 22.151675 | 0.8076 | 1 | 380 | 12.361744 | 0.49340 | 0 | 713 | 23.194535 | 0.45030 | 0 | 647 | 2111 | 30.64898 | 0.9708 | 1 | 298 | 773 | 38.55110 | 0.9247 | 1 | 0 | 2878 | 0.000000 | 0.09298 | 0 | 2623 | 3074 | 85.32856 | 0.8883 | 1 | 1635 | 148 | 9.051988 | 0.6465 | 0 | 6 | 0.3669725 | 0.4502 | 0 | 68 | 1330 | 5.1127820 | 0.8082 | 1 | 303 | 1330 | 22.781955 | 0.9029 | 1 | 0 | 3074 | 0.00000 | 0.3640 | 0 | 4.36250 | 0.9430 | 4 | 2.93218 | 0.7233 | 2 | 0.8883 | 0.8800 | 1 | 3.1718 | 0.8070 | 2 | 11.35478 | 0.9009 | 9 | 2390 | 1702 | 1282 | 1287 | 2390 | 53.84937 | 0.9566 | 1 | 102 | 1066 | 9.568480 | 0.8541 | 1 | 158 | 609 | 25.944171 | 0.67520 | 0 | 286 | 673 | 42.49629 | 0.4856 | 0 | 444 | 1282 | 34.63339 | 0.6634 | 0 | 467 | 1685 | 27.71513 | 0.9180 | 1 | 369 | 2379 | 15.510719 | 0.8562 | 1 | 342 | 14.309623 | 0.40850 | 0 | 548 | 22.928870 | 0.57100 | 0 | 647 | 1831.0000 | 35.33588 | 0.9862 | 1 | 202 | 576.0000 | 35.06944 | 0.9130 | 1 | 16 | 2134 | 0.7497657 | 0.40690 | 0 | 1896 | 2390.0000 | 79.33054 | 0.8451 | 1 | 1702 | 96 | 5.640423 | 0.5329 | 0 | 0 | 0.0000000 | 0.2186 | 0 | 0 | 1282 | 0.0000000 | 0.09796 | 0 | 186 | 1282.0000 | 14.508580 | 0.8308 | 1 | 43 | 2390 | 1.799163 | 0.7727 | 1 | 4.2483 | 0.9395 | 4 | 3.28560 | 0.8773 | 2 | 0.8451 | 0.8379 | 1 | 2.45296 | 0.4602 | 2 | 10.83196 | 0.8718 | 9 | 0 | 0 | 0 | 0 | 0 | Yes |
01015000500 | 01 | 015 | 000500 | AL | Alabama | Calhoun County | 3 | South Region | 6 | East South Central Division | 1731 | 1175 | 743 | 1042 | 1619 | 64.36072 | 0.9767 | 1 | 124 | 472 | 26.271186 | 0.98460 | 1 | 136 | 461 | 29.50108 | 0.48970 | 0 | 163 | 282 | 57.80142 | 0.7919 | 1 | 299 | 743 | 40.24226 | 0.64910 | 0 | 340 | 1270 | 26.77165 | 0.8389 | 1 | 460 | 1794 | 25.641026 | 0.8722 | 1 | 271 | 15.655690 | 0.70190 | 0 | 368 | 21.259388 | 0.32190 | 0 | 507 | 1449 | 34.98965 | 0.9885 | 1 | 150 | 386 | 38.86010 | 0.9269 | 1 | 0 | 1677 | 0.000000 | 0.09298 | 0 | 1559 | 1731 | 90.06355 | 0.9123 | 1 | 1175 | 50 | 4.255319 | 0.5128 | 0 | 4 | 0.3404255 | 0.4480 | 0 | 0 | 743 | 0.0000000 | 0.1238 | 0 | 122 | 743 | 16.419919 | 0.8473 | 1 | 0 | 1731 | 0.00000 | 0.3640 | 0 | 4.32150 | 0.9362 | 4 | 3.03218 | 0.7679 | 2 | 0.9123 | 0.9038 | 1 | 2.2959 | 0.3818 | 1 | 10.56188 | 0.8244 | 8 | 940 | 907 | 488 | 586 | 940 | 62.34043 | 0.9815 | 1 | 59 | 297 | 19.865320 | 0.9833 | 1 | 100 | 330 | 30.303030 | 0.79220 | 1 | 58 | 158 | 36.70886 | 0.3497 | 0 | 158 | 488 | 32.37705 | 0.6020 | 0 | 199 | 795 | 25.03145 | 0.8930 | 1 | 118 | 940 | 12.553192 | 0.7770 | 1 | 246 | 26.170213 | 0.90530 | 1 | 118 | 12.553192 | 0.08233 | 0 | 383 | 822.5089 | 46.56484 | 0.9984 | 1 | 30 | 197.8892 | 15.16000 | 0.5363 | 0 | 0 | 889 | 0.0000000 | 0.09479 | 0 | 898 | 940.3866 | 95.49264 | 0.9489 | 1 | 907 | 0 | 0.000000 | 0.1079 | 0 | 2 | 0.2205072 | 0.4456 | 0 | 2 | 488 | 0.4098361 | 0.23670 | 0 | 146 | 487.6463 | 29.939736 | 0.9404 | 1 | 0 | 940 | 0.000000 | 0.1831 | 0 | 4.2368 | 0.9379 | 4 | 2.61712 | 0.5593 | 2 | 0.9489 | 0.9409 | 1 | 1.91370 | 0.2196 | 1 | 9.71652 | 0.7468 | 8 | 0 | 0 | 0 | 0 | 0 | Yes |
01015000600 | 01 | 015 | 000600 | AL | Alabama | Calhoun County | 3 | South Region | 6 | East South Central Division | 2571 | 992 | 796 | 1394 | 2133 | 65.35396 | 0.9789 | 1 | 263 | 905 | 29.060773 | 0.98990 | 1 | 121 | 306 | 39.54248 | 0.75940 | 1 | 209 | 490 | 42.65306 | 0.4481 | 0 | 330 | 796 | 41.45729 | 0.68030 | 0 | 641 | 1556 | 41.19537 | 0.9554 | 1 | 416 | 1760 | 23.636364 | 0.8383 | 1 | 220 | 8.556982 | 0.24910 | 0 | 584 | 22.714897 | 0.41610 | 0 | 539 | 1353 | 39.83740 | 0.9955 | 1 | 243 | 466 | 52.14592 | 0.9783 | 1 | 30 | 2366 | 1.267963 | 0.48990 | 0 | 1944 | 2571 | 75.61260 | 0.8440 | 1 | 992 | 164 | 16.532258 | 0.7673 | 1 | 8 | 0.8064516 | 0.5110 | 0 | 46 | 796 | 5.7788945 | 0.8329 | 1 | 184 | 796 | 23.115578 | 0.9049 | 1 | 614 | 2571 | 23.88176 | 0.9734 | 1 | 4.44280 | 0.9548 | 4 | 3.12890 | 0.8088 | 2 | 0.8440 | 0.8362 | 1 | 3.9895 | 0.9792 | 4 | 12.40520 | 0.9696 | 11 | 1950 | 964 | 719 | 837 | 1621 | 51.63479 | 0.9467 | 1 | 157 | 652 | 24.079755 | 0.9922 | 1 | 22 | 364 | 6.043956 | 0.01547 | 0 | 129 | 355 | 36.33803 | 0.3420 | 0 | 151 | 719 | 21.00139 | 0.2303 | 0 | 363 | 1387 | 26.17159 | 0.9048 | 1 | 351 | 1613 | 21.760694 | 0.9435 | 1 | 249 | 12.769231 | 0.32090 | 0 | 356 | 18.256410 | 0.27140 | 0 | 332 | 1259.7041 | 26.35540 | 0.9135 | 1 | 136 | 435.6156 | 31.22018 | 0.8775 | 1 | 0 | 1891 | 0.0000000 | 0.09479 | 0 | 1463 | 1949.9821 | 75.02633 | 0.8219 | 1 | 964 | 14 | 1.452282 | 0.3459 | 0 | 8 | 0.8298755 | 0.5269 | 0 | 19 | 719 | 2.6425591 | 0.61120 | 0 | 197 | 719.0542 | 27.397100 | 0.9316 | 1 | 329 | 1950 | 16.871795 | 0.9655 | 1 | 4.0175 | 0.9001 | 4 | 2.47809 | 0.4764 | 2 | 0.8219 | 0.8149 | 1 | 3.38110 | 0.8712 | 2 | 10.69859 | 0.8583 | 9 | 0 | 0 | 0 | 0 | 0 | Yes |
01015002101 | 01 | 015 | 002101 | AL | Alabama | Calhoun County | 3 | South Region | 6 | East South Central Division | 3872 | 1454 | 1207 | 1729 | 2356 | 73.38710 | 0.9916 | 1 | 489 | 2020 | 24.207921 | 0.97860 | 1 | 20 | 168 | 11.90476 | 0.02541 | 0 | 718 | 1039 | 69.10491 | 0.9332 | 1 | 738 | 1207 | 61.14333 | 0.96900 | 1 | 113 | 725 | 15.58621 | 0.6035 | 0 | 664 | 3943 | 16.839970 | 0.6495 | 0 | 167 | 4.313016 | 0.05978 | 0 | 238 | 6.146694 | 0.02255 | 0 | 264 | 2359 | 11.19118 | 0.3027 | 0 | 94 | 263 | 35.74144 | 0.9050 | 1 | 46 | 3769 | 1.220483 | 0.48250 | 0 | 1601 | 3872 | 41.34814 | 0.6572 | 0 | 1454 | 761 | 52.338377 | 0.9504 | 1 | 65 | 4.4704264 | 0.6738 | 0 | 5 | 1207 | 0.4142502 | 0.2791 | 0 | 113 | 1207 | 9.362055 | 0.7004 | 0 | 1516 | 3872 | 39.15289 | 0.9860 | 1 | 4.19220 | 0.9133 | 3 | 1.77253 | 0.1304 | 1 | 0.6572 | 0.6511 | 0 | 3.5897 | 0.9337 | 2 | 10.21163 | 0.7885 | 6 | 3238 | 1459 | 1014 | 1082 | 1836 | 58.93246 | 0.9735 | 1 | 251 | 1403 | 17.890235 | 0.9767 | 1 | 31 | 155 | 20.000000 | 0.44920 | 0 | 515 | 859 | 59.95343 | 0.8554 | 1 | 546 | 1014 | 53.84615 | 0.9535 | 1 | 134 | 916 | 14.62882 | 0.7033 | 0 | 251 | 3238 | 7.751699 | 0.5588 | 0 | 167 | 5.157505 | 0.03597 | 0 | 169 | 5.219271 | 0.02111 | 0 | 323 | 1667.0000 | 19.37612 | 0.7205 | 0 | 94 | 277.0000 | 33.93502 | 0.9040 | 1 | 0 | 3164 | 0.0000000 | 0.09479 | 0 | 1045 | 3238.0000 | 32.27301 | 0.5125 | 0 | 1459 | 607 | 41.603838 | 0.9185 | 1 | 65 | 4.4551062 | 0.6949 | 0 | 24 | 1014 | 2.3668639 | 0.57900 | 0 | 85 | 1014.0000 | 8.382643 | 0.6775 | 0 | 1402 | 3238 | 43.298332 | 0.9876 | 1 | 4.1658 | 0.9263 | 3 | 1.77637 | 0.1225 | 1 | 0.5125 | 0.5082 | 0 | 3.85750 | 0.9661 | 2 | 10.31217 | 0.8160 | 6 | 0 | 0 | 0 | 0 | 0 | Yes |
See how many tracts don’t have an LIHTC project post-2010 out of eligible tracts in our division and nationally:
See how many tracts do have an LIHTC project post-2010 out of eligible tracts in our division:
View SVI DATA distributions:
# See distribution of flags for SVI themes in top quarter in 2010
table(svi_national_lihtc$F_TOTAL_10)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 10 48 92 137 216 297 359 499 608 660 491 225 74 6
# Average number of flags in 2010
mean(svi_national_lihtc$F_TOTAL_10)
[1] 8.465216
# See distribution of flags for SVI themes in top quarter in 2020
table(svi_national_lihtc$F_TOTAL_20)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
8 21 49 92 175 265 364 443 557 626 552 346 181 40 4
# Average number of flags in 2020
mean(svi_national_lihtc$F_TOTAL_20)
[1] 8.022831
# See distribution of flags for SVI themes in top quarter in 2010
table(svi_divisional_lihtc$F_TOTAL_10)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 8 9 14 34 40 45 72 82 99 101 83 47 19 2 2
# Average number of flags in 2010
mean(svi_divisional_lihtc$F_TOTAL_10)
[1] 8.384498
# See distribution of flags for SVI themes in top quarter in 2020
table(svi_divisional_lihtc$F_TOTAL_20)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 2 14 19 32 44 49 74 90 89 99 75 45 21 2 1
# Average number of flags in 2020
mean(svi_divisional_lihtc$F_TOTAL_20)
[1] 8.265957
Recall that we have data on counties in our data set:
[1] "GEOID_2010_trt" "FIPS_st" "FIPS_county" "FIPS_tract"
[5] "state" "state_name" "county" "region_number"
[9] "region" "division_number" "division"
Therefore, just as with our NMTC data, we can summarize our project counts up to the county-level for easier visualizations with the following function NOTE: Remember to add all functions to project_data_steps.R
:
summarize_county_lihtc <- function(df) {
# Find count of new NMTC projects after 2010 by county
county_lihtc_project_cnt <- aggregate(df$post10_lihtc_project_cnt,
by=list(State=df$state,
County=df$county,
Division=df$division),
FUN=sum) %>%
arrange(State, County) %>%
rename("post10_lihtc_project_cnt" = "x")
# Find count of census tracts in each county
county_lihtc_tracts <- aggregate(df$GEOID_2010_trt,
by=list(State=df$state,
County=df$county,
Division=df$division),
FUN=length) %>%
mutate(tract_cnt = x) %>%
select (-x)
# Find sum of NMTC project dollars in each county
county_lihtc_dollars <- aggregate(df$post10_lihtc_project_dollars,
by=list(State=df$state,
County=df$county,
Division=df$division),
FUN=sum) %>%
arrange(State, County) %>%
rename("post10_lihtc_project_dollars" = "x")
# Create character column with NMTC dollars formatted as currency
county_lihtc_dollars$post10_lihtc_dollars_formatted <-
scales::dollar_format()(county_lihtc_dollars$post10_lihtc_project_dollars)
# Join project counts and census tract counts datasets
county_lihtc0 <- left_join(county_lihtc_project_cnt, county_lihtc_tracts,
join_by("State" == "State",
"County" == "County",
"Division" == "Division"))
# Add dollar amounts
county_lihtc <- left_join(county_lihtc0, county_lihtc_dollars,
join_by("State" == "State",
"County" == "County",
"Division" == "Division"))
# Output data
return(county_lihtc)
}
svi_national_lihtc_county_sum <- summarize_county_lihtc(svi_national_lihtc)
svi_national_lihtc_county_sum %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
State | County | Division | post10_lihtc_project_cnt | tract_cnt | post10_lihtc_project_dollars | post10_lihtc_dollars_formatted |
---|---|---|---|---|---|---|
AK | Bethel Census Area | Pacific Division | 0 | 2 | 0 | $0 |
AK | Dillingham Census Area | Pacific Division | 0 | 1 | 0 | $0 |
AK | Kenai Peninsula Borough | Pacific Division | 0 | 1 | 0 | $0 |
AK | Nome Census Area | Pacific Division | 0 | 1 | 0 | $0 |
AK | Yukon-Koyukuk Census Area | Pacific Division | 0 | 2 | 0 | $0 |
AL | Barbour County | East South Central Division | 0 | 1 | 0 | $0 |
svi_divisional_lihtc_county_sum <- summarize_county_lihtc(svi_divisional_lihtc)
svi_divisional_lihtc_county_sum %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
State | County | Division | post10_lihtc_project_cnt | tract_cnt | post10_lihtc_project_dollars | post10_lihtc_dollars_formatted |
---|---|---|---|---|---|---|
NJ | Atlantic County | Middle Atlantic Division | 1 | 3 | 1497998 | $1,497,998 |
NJ | Bergen County | Middle Atlantic Division | 0 | 2 | 0 | $0 |
NJ | Burlington County | Middle Atlantic Division | 0 | 2 | 0 | $0 |
NJ | Camden County | Middle Atlantic Division | 1 | 6 | 0 | $0 |
NJ | Cape May County | Middle Atlantic Division | 0 | 2 | 0 | $0 |
NJ | Cumberland County | Middle Atlantic Division | 0 | 1 | 0 | $0 |
We can then utilize our flag_summarize
function from Lab 03 to find our county-level SVI flag calculations:
# Create data frame of LIHTC eligible tracts 2010 nationally
svi_national_lihtc10 <- svi_national_lihtc %>% select(GEOID_2010_trt, FIPS_st, FIPS_county,
state, state_name, county, region_number, region, division_number,
division, F_TOTAL_10, E_TOTPOP_10) %>% rename("F_TOTAL" = "F_TOTAL_10")
# Count national-level SVI flags for 2010, create unified fips column
svi_2010_national_county_flags_lihtc <- flag_summarize(svi_national_lihtc10, "E_TOTPOP_10") %>% unite("fips_county_st", FIPS_st:FIPS_county, remove = FALSE, sep="")
# Add suffix to flag columns 2010
colnames(svi_2010_national_county_flags_lihtc)[11:15] <- paste0(colnames(svi_2010_national_county_flags_lihtc)[11:15], 10)
# Create data frame of LIHTC eligible tracts 2020 nationally
svi_national_lihtc20 <- svi_national_lihtc %>% select(GEOID_2010_trt, FIPS_st, FIPS_county,
state, state_name, county, region_number, region, division_number,
division, F_TOTAL_20, E_TOTPOP_20) %>% rename("F_TOTAL" = "F_TOTAL_20")
# Count national-level SVI flags for 2020, create unified fips column
svi_2020_national_county_flags_lihtc <- flag_summarize(svi_national_lihtc20, "E_TOTPOP_20") %>% unite("fips_county_st", FIPS_st:FIPS_county, remove = FALSE, sep="")
# Identify needed columns for 2020, add suffix
colnames(svi_2020_national_county_flags_lihtc)[11:15] <- paste0(colnames(svi_2020_national_county_flags_lihtc)[11:15], "20")
# Filter to needed columns for 2020 to avoid duplicate column column names
svi_2020_national_county_flags_join_lihtc <- svi_2020_national_county_flags_lihtc %>% ungroup() %>% select("fips_county_st", all_of(colnames(svi_2020_national_county_flags_lihtc)[11:15]))
# Join 2010 and 2020 data
svi_national_county_flags_lihtc <- left_join(svi_2010_national_county_flags_lihtc, svi_2020_national_county_flags_join_lihtc, join_by("fips_county_st" == "fips_county_st"))
svi_national_county_flags_lihtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
fips_county_st | FIPS_st | FIPS_county | state | state_name | county | region_number | region | division_number | division | flag_count10 | pop10 | flag_by_pop10 | flag_count_quantile10 | flag_pop_quantile10 | flag_count20 | pop20 | flag_by_pop20 | flag_count_quantile20 | flag_pop_quantile20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
01005 | 01 | 005 | AL | Alabama | Barbour County | 3 | South Region | 6 | East South Central Division | 6 | 1753 | 0.0034227 | 0.2 | 0.8 | 7 | 1527 | 0.0045842 | 0.2 | 1.0 |
01011 | 01 | 011 | AL | Alabama | Bullock County | 3 | South Region | 6 | East South Central Division | 6 | 1652 | 0.0036320 | 0.2 | 0.8 | 8 | 1382 | 0.0057887 | 0.4 | 1.0 |
01015 | 01 | 015 | AL | Alabama | Calhoun County | 3 | South Region | 6 | East South Central Division | 40 | 15130 | 0.0026438 | 0.8 | 0.6 | 37 | 11783 | 0.0031401 | 0.8 | 0.8 |
01023 | 01 | 023 | AL | Alabama | Choctaw County | 3 | South Region | 6 | East South Central Division | 12 | 5578 | 0.0021513 | 0.6 | 0.4 | 15 | 5412 | 0.0027716 | 0.6 | 0.8 |
01031 | 01 | 031 | AL | Alabama | Coffee County | 3 | South Region | 6 | East South Central Division | 12 | 8139 | 0.0014744 | 0.6 | 0.2 | 13 | 8517 | 0.0015264 | 0.6 | 0.2 |
01033 | 01 | 033 | AL | Alabama | Colbert County | 3 | South Region | 6 | East South Central Division | 10 | 1983 | 0.0050429 | 0.4 | 1.0 | 8 | 1931 | 0.0041429 | 0.4 | 1.0 |
Join flags with LIHTC county project summary data:
svi_national_county_lihtc <- left_join(svi_national_lihtc_county_sum,
svi_national_county_flags_lihtc,
join_by("State" == "state", "County" == "county",
"Division" == "division"))
svi_national_county_lihtc$post10_lihtc_project_cnt[is.na(svi_national_county_lihtc$post10_lihtc_project_cnt)] <- 0
svi_national_county_lihtc$county_name <- paste0(svi_national_county_lihtc$County, ", ", svi_national_county_lihtc$State)
svi_national_county_lihtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
State | County | Division | post10_lihtc_project_cnt | tract_cnt | post10_lihtc_project_dollars | post10_lihtc_dollars_formatted | fips_county_st | FIPS_st | FIPS_county | state_name | region_number | region | division_number | flag_count10 | pop10 | flag_by_pop10 | flag_count_quantile10 | flag_pop_quantile10 | flag_count20 | pop20 | flag_by_pop20 | flag_count_quantile20 | flag_pop_quantile20 | county_name |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AK | Bethel Census Area | Pacific Division | 0 | 2 | 0 | $0 | 02050 | 02 | 050 | Alaska | 4 | West Region | 9 | 18 | 10867 | 0.0016564 | 0.6 | 0.4 | 20 | 11715 | 0.0017072 | 0.8 | 0.4 | Bethel Census Area, AK |
AK | Dillingham Census Area | Pacific Division | 0 | 1 | 0 | $0 | 02070 | 02 | 070 | Alaska | 4 | West Region | 9 | 9 | 2569 | 0.0035033 | 0.4 | 0.8 | 10 | 2801 | 0.0035702 | 0.4 | 0.8 | Dillingham Census Area, AK |
AK | Kenai Peninsula Borough | Pacific Division | 0 | 1 | 0 | $0 | 02122 | 02 | 122 | Alaska | 4 | West Region | 9 | 7 | 251 | 0.0278884 | 0.2 | 1.0 | 8 | 531 | 0.0150659 | 0.4 | 1.0 | Kenai Peninsula Borough, AK |
AK | Nome Census Area | Pacific Division | 0 | 1 | 0 | $0 | 02180 | 02 | 180 | Alaska | 4 | West Region | 9 | 9 | 5766 | 0.0015609 | 0.4 | 0.2 | 10 | 5901 | 0.0016946 | 0.4 | 0.4 | Nome Census Area, AK |
AK | Yukon-Koyukuk Census Area | Pacific Division | 0 | 2 | 0 | $0 | 02290 | 02 | 290 | Alaska | 4 | West Region | 9 | 18 | 2300 | 0.0078261 | 0.6 | 1.0 | 21 | 2153 | 0.0097538 | 0.8 | 1.0 | Yukon-Koyukuk Census Area, AK |
AL | Barbour County | East South Central Division | 0 | 1 | 0 | $0 | 01005 | 01 | 005 | Alabama | 3 | South Region | 6 | 6 | 1753 | 0.0034227 | 0.2 | 0.8 | 7 | 1527 | 0.0045842 | 0.2 | 1.0 | Barbour County, AL |
# Create data frame of LIHTC eligible tracts 2020 nationally
svi_divisional_lihtc10 <- svi_divisional_lihtc %>% select(GEOID_2010_trt, FIPS_st, FIPS_county,
state, state_name, county, region_number, region, division_number,
division, F_TOTAL_10, E_TOTPOP_10) %>% rename("F_TOTAL" = "F_TOTAL_10")
# Count divisional-level SVI flags for 2010, create unified fips column
svi_2010_divisional_county_flags_lihtc <- flag_summarize(svi_divisional_lihtc10, "E_TOTPOP_10") %>% unite("fips_county_st", FIPS_st:FIPS_county, remove = FALSE, sep="")
# Add suffix to flag columns 2010
colnames(svi_2010_divisional_county_flags_lihtc)[11:15] <- paste0(colnames(svi_2010_divisional_county_flags_lihtc)[11:15], "10")
# Create data frame of LIHTC eligible tracts 2020 nationally
svi_divisional_lihtc20 <- svi_divisional_lihtc %>% select(GEOID_2010_trt, FIPS_st, FIPS_county,
state, state_name, county, region_number, region, division_number,
division, F_TOTAL_20, E_TOTPOP_20) %>% rename("F_TOTAL" = "F_TOTAL_20")
# Count divisional-level SVI flags for 2020, create unified fips column
svi_2020_divisional_county_flags_lihtc <- flag_summarize(svi_divisional_lihtc20, "E_TOTPOP_20") %>% unite("fips_county_st", FIPS_st:FIPS_county, remove = FALSE, sep="")
# Identify needed columns for 2020
colnames(svi_2020_divisional_county_flags_lihtc)[11:15] <- paste0(colnames(svi_2020_divisional_county_flags_lihtc)[11:15], "20")
# Filter to needed columns for 2020 to avoid duplicate column column names
svi_2020_divisional_county_flags_join_lihtc <- svi_2020_divisional_county_flags_lihtc %>% ungroup() %>% select("fips_county_st", all_of(colnames(svi_2020_divisional_county_flags_lihtc)[11:15]))
# Join 2010 and 2020 data
svi_divisional_county_flags_lihtc <- left_join(svi_2010_divisional_county_flags_lihtc, svi_2020_divisional_county_flags_join_lihtc, join_by("fips_county_st" == "fips_county_st"))
svi_divisional_county_flags_lihtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
fips_county_st | FIPS_st | FIPS_county | state | state_name | county | region_number | region | division_number | division | flag_count10 | pop10 | flag_by_pop10 | flag_count_quantile10 | flag_pop_quantile10 | flag_count20 | pop20 | flag_by_pop20 | flag_count_quantile20 | flag_pop_quantile20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
34001 | 34 | 001 | NJ | New Jersey | Atlantic County | 1 | Northeast Region | 2 | Middle Atlantic Division | 35 | 7939 | 0.0044086 | 0.8 | 1.0 | 37 | 8027 | 0.0046094 | 0.8 | 1.0 |
34003 | 34 | 003 | NJ | New Jersey | Bergen County | 1 | Northeast Region | 2 | Middle Atlantic Division | 13 | 11993 | 0.0010840 | 0.6 | 0.2 | 16 | 15211 | 0.0010519 | 0.6 | 0.2 |
34005 | 34 | 005 | NJ | New Jersey | Burlington County | 1 | Northeast Region | 2 | Middle Atlantic Division | 11 | 4637 | 0.0023722 | 0.4 | 0.6 | 6 | 6493 | 0.0009241 | 0.2 | 0.2 |
34007 | 34 | 007 | NJ | New Jersey | Camden County | 1 | Northeast Region | 2 | Middle Atlantic Division | 72 | 22516 | 0.0031977 | 1.0 | 0.8 | 61 | 20790 | 0.0029341 | 0.8 | 0.8 |
34009 | 34 | 009 | NJ | New Jersey | Cape May County | 1 | Northeast Region | 2 | Middle Atlantic Division | 15 | 5839 | 0.0025689 | 0.6 | 0.8 | 10 | 5394 | 0.0018539 | 0.4 | 0.4 |
34011 | 34 | 011 | NJ | New Jersey | Cumberland County | 1 | Northeast Region | 2 | Middle Atlantic Division | 10 | 1053 | 0.0094967 | 0.4 | 1.0 | 10 | 801 | 0.0124844 | 0.4 | 1.0 |
Join flags with LIHTC county project summary data for division:
svi_divisional_county_lihtc <- left_join(svi_divisional_lihtc_county_sum,
svi_divisional_county_flags_lihtc,
join_by("State" == "state", "County" == "county",
"Division" == "division"))
svi_divisional_county_lihtc$post10_lihtc_project_cnt[is.na(svi_divisional_county_lihtc $post10_lihtc_project_cnt)] <- 0
svi_divisional_county_lihtc$county_name <- paste0(svi_divisional_county_lihtc$County, ", ", svi_divisional_county_lihtc$State)
svi_divisional_county_lihtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
State | County | Division | post10_lihtc_project_cnt | tract_cnt | post10_lihtc_project_dollars | post10_lihtc_dollars_formatted | fips_county_st | FIPS_st | FIPS_county | state_name | region_number | region | division_number | flag_count10 | pop10 | flag_by_pop10 | flag_count_quantile10 | flag_pop_quantile10 | flag_count20 | pop20 | flag_by_pop20 | flag_count_quantile20 | flag_pop_quantile20 | county_name |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NJ | Atlantic County | Middle Atlantic Division | 1 | 3 | 1497998 | $1,497,998 | 34001 | 34 | 001 | New Jersey | 1 | Northeast Region | 2 | 35 | 7939 | 0.0044086 | 0.8 | 1.0 | 37 | 8027 | 0.0046094 | 0.8 | 1.0 | Atlantic County, NJ |
NJ | Bergen County | Middle Atlantic Division | 0 | 2 | 0 | $0 | 34003 | 34 | 003 | New Jersey | 1 | Northeast Region | 2 | 13 | 11993 | 0.0010840 | 0.6 | 0.2 | 16 | 15211 | 0.0010519 | 0.6 | 0.2 | Bergen County, NJ |
NJ | Burlington County | Middle Atlantic Division | 0 | 2 | 0 | $0 | 34005 | 34 | 005 | New Jersey | 1 | Northeast Region | 2 | 11 | 4637 | 0.0023722 | 0.4 | 0.6 | 6 | 6493 | 0.0009241 | 0.2 | 0.2 | Burlington County, NJ |
NJ | Camden County | Middle Atlantic Division | 1 | 6 | 0 | $0 | 34007 | 34 | 007 | New Jersey | 1 | Northeast Region | 2 | 72 | 22516 | 0.0031977 | 1.0 | 0.8 | 61 | 20790 | 0.0029341 | 0.8 | 0.8 | Camden County, NJ |
NJ | Cape May County | Middle Atlantic Division | 0 | 2 | 0 | $0 | 34009 | 34 | 009 | New Jersey | 1 | Northeast Region | 2 | 15 | 5839 | 0.0025689 | 0.6 | 0.8 | 10 | 5394 | 0.0018539 | 0.4 | 0.4 | Cape May County, NJ |
NJ | Cumberland County | Middle Atlantic Division | 0 | 1 | 0 | $0 | 34011 | 34 | 011 | New Jersey | 1 | Northeast Region | 2 | 10 | 1053 | 0.0094967 | 0.4 | 1.0 | 10 | 801 | 0.0124844 | 0.4 | 1.0 | Cumberland County, NJ |
Now that we have our NMTC and LIHTC data sets created, let’s create some visualizations to better examine our data:
To begin, let’s explore the relationship between SVI flag counts in 2010 and the amount of NMTC dollars received from 2011-2020 by county nationally.
We can accomplish this by reviewing our summary statistics, a scatterplot, and a calculation of Pearson’s r to measure the correlation.
First let’s create a dataset of only counties with projects:
Now let’s review the summary statistics for our data set:
summary(svi_national_county_nmtc_projects$flag_count10)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0 19 40 177 132 9936
summary(svi_national_county_nmtc_projects$post10_nmtc_project_dollars)
Min. 1st Qu. Median Mean 3rd Qu. Max.
5154 5970000 12760000 30332743 28505000 987407086
As we can see from the summary statistics, there’s quite a spread of values across counties from 0 SVI flags to over 9,000 and ~$5,000 in tax credits to nearly $1bn. Let’s view this visually in a scatterplot:
# Scatterplot
# y is our independent variable (NMTC Project Dollars),
# x is our dependent variable (SVI flag count)
ggplot2::ggplot(svi_national_county_nmtc_projects,
aes(x=flag_count10,
y=post10_nmtc_project_dollars)) +
geom_point() +
geom_smooth(method="lm") +
scale_y_continuous(labels = scales::dollar_format())
# Pearson's r calculation
cor(svi_national_county_nmtc_projects$flag_count10, svi_national_county_nmtc_projects$post10_nmtc_project_dollars, method = "pearson")
[1] 0.8197007
Here, we can see that when we consider ALL counties, we have a very strong positive correlation between SVI Flag Counts in 2010, suggesting that counties that had more social vulnerability in 2010 received more NMTC tax credit dollars in 2011-2020.
However, upon further inspection, we can also see that our data is not in a continuous line. Rather, we have the majority of our data clustered in the bottom left corner, a few scattered towards the middle and a single data point all the way in the top right of our plot.
We can use a box plot to look closer at this:
boxplot(svi_national_county_nmtc_projects$flag_count10)
boxplot.stats(svi_national_county_nmtc_projects$flag_count10)$out %>% sort(decreasing = TRUE)
[1] 9936 5111 3732 3561 2941 2537 2508 2453 2296 2279 1906 1731 1569 1489 1486
[16] 1436 1110 1106 1096 1057 1013 1004 995 991 984 977 960 942 919 871
[31] 854 850 836 822 795 774 759 746 731 728 718 714 705 701 691
[46] 682 651 650 641 629 595 572 571 569 564 546 541 531 517 499
[61] 491 487 484 468 467 463 461 458 458 455 451 442 429 423 422
[76] 413 413 408 401 399 389 381 378 378 377 374 369 363 362 358
[91] 356 355 352 350 349 349 342 341 338 328 326 318 316 313
Similar to our observations in our correlation plot, we can see that there are several values that fall outside the majority cluster of our dataset, known as outliers. However, one point in particular, stands out even amongst the outliers and that is our county with 9,936 SVI Flags in 2010. This data point is known as an influential point since it’s extreme value can alter the outcomes of our model.
In some instances it is prudent to remove outliers that can skew regression models. However, in cases where the outlier is a natural occurrence and not an error within the data set or sampling methodology, omitting the outlier can result in faulty conclusions.
Thus, it’s important that we examine this data point further.
We can filter our data set to identify it as Los Angeles County, CA:
svi_national_county_nmtc_projects %>% filter(flag_count10 == 9936) %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
State | County | Division | post10_nmtc_project_cnt | tract_cnt | post10_nmtc_project_dollars | post10_nmtc_dollars_formatted | fips_county_st | FIPS_st | FIPS_county | state_name | region_number | region | division_number | flag_count10 | pop10 | flag_by_pop10 | flag_count_quantile10 | flag_pop_quantile10 | flag_count20 | pop20 | flag_by_pop20 | flag_count_quantile20 | flag_pop_quantile20 | county_name |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CA | Los Angeles County | Pacific Division | 72 | 1070 | 987407086 | $987,407,086 | 06037 | 06 | 037 | California | 4 | West Region | 9 | 9936 | 4431665 | 0.002242 | 1 | 1 | 9098 | 4529210 | 0.0020087 | 1 | 1 | Los Angeles County, CA |
GEOID_2010_trt F_TOTAL_10 post10_nmtc_dollars
Length:1070 Min. : 2.000 Min. : 0
Class :character 1st Qu.: 8.000 1st Qu.: 0
Mode :character Median :10.000 Median : 0
Mean : 9.286 Mean : 922810
3rd Qu.:11.000 3rd Qu.: 0
Max. :15.000 Max. :76845100
Looking at the summary stats for LA County, we can quickly conclude that we have not made an error in our calculations, there are indeed 1,070 tracts in our Los Angeles data set and with a median total SVI Flag count (at top 25% vulnerability) of 10 per tract, it’s reasonable to have ~10,000 flags.
1070*10
[1] 10700
Similarly, the max tract has $76,845,100 NMTC dollars while the mean tract has $922,810 dollars.
Therefore, we can conclude that there is no reason to exclude LA County from our national analysis of the relationship between SVI Flag Counts in 2010 and NMTC Dollars from 2011-2020.
But what if we want to know the relationship between SVI Flag Counts and NMTC dollars in the majority of our counties?
To discover this, we can utilize an algorithm known as k-means clustering
to create clusters within our data set and examine each of the groupings separately.
As previously stated, we will be using the machine learning technique K-Means Clustering to identify smaller groupings of data in our dataset and evaluate the strength of the relationship between 2010 Flag Count and NMTC Dollars in 2011-2020 in the absence of the influential point.
To accomplish this, we first need to create a dataset of just our variables of interest and set our county_name column to the rownames since only numeric values can be entered into the kmeans() function.
We also want to double-check that all null values are absent from the data set and use scale() to convert our data to a comparable range:
svi_national_nmtc_cluster <- svi_national_county_nmtc_projects %>%
select(county_name, post10_nmtc_project_dollars,
flag_count10) %>%
remove_rownames %>%
column_to_rownames(var="county_name")
# Remove nulls, if in dataset
svi_national_nmtc_cluster <- na.omit(svi_national_nmtc_cluster)
# Scale numeric variables
svi_national_nmtc_cluster <- scale(svi_national_nmtc_cluster)
svi_national_nmtc_cluster %>% head(5)
post10_nmtc_project_dollars flag_count10
Aleutians East Borough, AK -0.2125961 -0.3189664
Anchorage Municipality, AK -0.2995956 -0.1981871
Wade Hampton Census Area, AK -0.1300468 -0.3170792
Yukon-Koyukuk Census Area, AK -0.3310540 -0.2831100
Baldwin County, AL -0.1906291 -0.2698998
Next we can try a few different cluster numbers and allow the algorithm to search through 25 sets to identify the best groupings for each number:
set.seed(123)
k2_nmtc_nat <- kmeans(svi_national_nmtc_cluster, centers = 2, nstart = 25)
set.seed(123)
k3_nmtc_nat <- kmeans(svi_national_nmtc_cluster, centers = 3, nstart = 25)
set.seed(123)
k4_nmtc_nat <- kmeans(svi_national_nmtc_cluster, centers = 4, nstart = 25)
set.seed(123)
k5_nmtc_nat <- kmeans(svi_national_nmtc_cluster, centers = 5, nstart = 25)
Next we can view the plots to visually check the groupings and see if there’s any overlap:
# plots to compare
p_k2_nmtc_nat <- factoextra::fviz_cluster(k2_nmtc_nat, geom = "point", data = svi_national_nmtc_cluster) + ggtitle("k = 2")
p_k3_nmtc_nat <- factoextra::fviz_cluster(k3_nmtc_nat, geom = "point", data = svi_national_nmtc_cluster) + ggtitle("k = 3")
p_k4_nmtc_nat <- factoextra::fviz_cluster(k4_nmtc_nat, geom = "point", data = svi_national_nmtc_cluster) + ggtitle("k = 4")
p_k5_nmtc_nat <- factoextra::fviz_cluster(k5_nmtc_nat, geom = "point", data = svi_national_nmtc_cluster) + ggtitle("k = 5")
grid.arrange(p_k2_nmtc_nat, p_k3_nmtc_nat, p_k4_nmtc_nat, p_k5_nmtc_nat, nrow = 2)
While we can visually look through these to see that group counts 3 and 4 appear to provide the best options without too much overlap, we can remove the potentially fallacies of visual inspection by employing the usage of an Elbow Plot which will measure the variances between the groups to identify which group number is optimal before the changes in group size start to have a negligible effect on analysis.
elbow_plot <- function(df) {
# Code source: https://uc-r.github.io/kmeans_clustering
# Repeats same outcome each time run
set.seed(123)
# function to compute total within-cluster sum of square
wss <- function(k) {
print(k)
kmeans(df, k, nstart = 10, iter.max=25 )$tot.withinss
}
# Compute and plot wss for k = 1 to k = 15 (or one less than nrow(15) if row count is <= 15)
if (nrow(df) > 15) {
k.values <- 1:15
print(k.values)
} else {
end <- nrow(df)-1
k.values <- 1:end
print(k.values)
}
# extract wss for 2-15 clusters (or one less than nrow(15) if row count is <= 15)
wss_values <- map_dbl(k.values, wss)
plot(k.values, wss_values,
type="b", pch = 19, frame = FALSE,
xlab="Number of clusters K",
ylab="Total within-clusters sum of squares")
}
elbow_plot(svi_national_nmtc_cluster)
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
[1] 6
[1] 7
[1] 8
[1] 9
[1] 10
[1] 11
[1] 12
[1] 13
[1] 14
[1] 15
Here we can see that the spacing between clusters decreases substantially after 3. Thus, we will go with 3 clusters:
p_k3_nmtc_nat <- factoextra::fviz_cluster(k3_nmtc_nat, geom = "point", data = svi_national_nmtc_cluster) + ggtitle("k = 3")
p_k3_nmtc_nat
We can then transform our cluster matrix back to a data frame and assign these clusters to our counties:
svi_national_nmtc_cluster_label <- as.data.frame(svi_national_nmtc_cluster) %>%
rownames_to_column(var = "county_name") %>%
as_tibble() %>%
mutate(cluster = k3_nmtc_nat$cluster) %>%
select(county_name, cluster)
svi_national_county_nmtc_projects2 <- left_join(svi_national_county_nmtc_projects, svi_national_nmtc_cluster_label, join_by(county_name == county_name))
# View county counts in each cluster
table(svi_national_county_nmtc_projects2$cluster)
1 2 3
2 27 758
Now we can re-examine the correlation between 2010 SVI Flag Counts and NMTC Project Dollars for each subset of our data.
First recall our overall outcomes:
# Overall Scatterplot
# y is our independent variable (NMTC Project Dollars),
# x is our dependent variable (SVI flag count)
ggplot2::ggplot(svi_national_county_nmtc_projects2,
aes(x=flag_count10,
y=post10_nmtc_project_dollars)) +
geom_point() +
geom_smooth(method="lm") +
scale_y_continuous(labels = scales::dollar_format())
# Pearson's r calculation
cor(svi_national_county_nmtc_projects2$flag_count10, svi_national_county_nmtc_projects2$post10_nmtc_project_dollars, method = "pearson")
[1] 0.8197007
Now let’s look at our our high end counties in cluster 1:
# Cluster 1 Scatterplot
# y is our independent variable (NMTC Project Dollars),
# x is our dependent variable (SVI flag count)
svi_national_county_nmtc_projects2 %>%
filter(cluster == 1) %>%
ggplot2::ggplot(aes(x=flag_count10,
y=post10_nmtc_project_dollars)) +
geom_point() +
geom_smooth(method="lm") +
scale_y_continuous(labels = scales::dollar_format())
flag_count10 post10_nmtc_project_dollars
flag_count10 1 1
post10_nmtc_project_dollars 1 1
As expected, we see a very high correlation where there’s only 2 counties with SVI flag counts above 5,000 and there’s a perfect relationship where the county with the higher SVI flag count received more money than the lower value.
We can see these two counties here:
county_name | flag_count10 | post10_nmtc_dollars_formatted |
---|---|---|
Cook County, IL | 5111 | $790,158,215 |
Los Angeles County, CA | 9936 | $987,407,086 |
Now let’s examine our data for Cluster 2 (mid-range data):
# Cluster 2 Scatterplot
# y is our independent variable (NMTC Project Dollars),
# x is our dependent variable (SVI flag count)
svi_national_county_nmtc_projects2 %>%
filter(cluster == 2) %>%
ggplot2::ggplot(aes(x=flag_count10,
y=post10_nmtc_project_dollars)) +
geom_point() +
geom_smooth(method="lm") +
scale_y_continuous(labels = scales::dollar_format())
flag_count10 post10_nmtc_project_dollars
flag_count10 1.00000000 -0.05722041
post10_nmtc_project_dollars -0.05722041 1.00000000
As we can see here, our mid range points are scattered and have a very weak correlation that skews slightly negative, but doesn’t have enough strength for us to confidently draw conclusions.
Rather, it seems the amount of money given to counties with 500 - 5,000 SVI flags varied widely between just under $100 million to just over $500 million.
We can view these counties here:
county_name | flag_count10 | post10_nmtc_dollars_formatted |
---|---|---|
Hennepin County, MN | 564 | $173,393,000 |
District of Columbia, DC | 595 | $377,155,570 |
Hamilton County, OH | 629 | $397,543,856 |
Jackson County, MO | 651 | $201,937,281 |
Suffolk County, MA | 701 | $192,010,188 |
Orleans Parish, LA | 718 | $233,891,078 |
Allegheny County, PA | 731 | $244,342,400 |
Fulton County, GA | 795 | $437,737,000 |
New York County, NY | 850 | $255,545,686 |
Marion County, IN | 919 | $138,426,520 |
Baltimore city, MD | 960 | $333,109,232 |
Milwaukee County, WI | 984 | $315,495,493 |
Shelby County, TN | 1004 | $289,352,388 |
Fresno County, CA | 1110 | $115,258,480 |
Bexar County, TX | 1436 | $199,964,269 |
Clark County, NV | 1486 | $225,315,967 |
Cuyahoga County, OH | 1489 | $306,121,487 |
San Diego County, CA | 1569 | $221,738,411 |
Philadelphia County, PA | 1906 | $550,969,964 |
Queens County, NY | 2279 | $85,225,100 |
Miami-Dade County, FL | 2296 | $233,661,603 |
Maricopa County, AZ | 2453 | $84,923,464 |
Dallas County, TX | 2508 | $302,019,013 |
Bronx County, NY | 2537 | $306,355,715 |
Wayne County, MI | 2941 | $360,949,480 |
Harris County, TX | 3561 | $262,456,477 |
Kings County, NY | 3732 | $216,348,600 |
Finally, let’s look at the majority of our data (low SVI flag count, low NMTC dollars) in cluster 3:
# Cluster 3 Scatterplot
# y is our independent variable (NMTC Project Dollars),
# x is our dependent variable (SVI flag count)
svi_national_county_nmtc_projects2 %>%
filter(cluster == 3) %>%
ggplot2::ggplot(aes(x=flag_count10,
y=post10_nmtc_project_dollars)) +
geom_point() +
geom_smooth(method="lm") +
scale_y_continuous(labels = scales::dollar_format())
flag_count10 post10_nmtc_project_dollars
flag_count10 1.0000000 0.4736348
post10_nmtc_project_dollars 0.4736348 1.0000000
So here we can see out correlation has dropped from very strong to moderate. While the trend of the line still suggests there’s a positive relationship, we can confirm that LA County has a strong influence on our correlation.
Thus, we can conclude here that there is a pattern where counties with lower counts of flags have a moderately positive correlation between more vulnerable counties receiving more NMTC money than less vulnerable counties and counties with the highest counts of SVI flags also following a pattern of more vulnerable counties receiving more NMTC dollars.
Our mid-level counties do not have such a clear pattern on a national level, though they may rank differently divisionally.
Now let’s view this relationship spatially by creating a bivariate map.
First, we’ll pull county and state shapefile data for the entire US (Note: We already have this data for our divisions, so we will not need to re-run it. )
# Recall that we are working with 2010 census tracts, thus we need to pull the 2010 shapefiles
county_sf = tigris::counties(year = 2010, cb = TRUE)
# Shift geometric locations of AK and HI
county_sf <- shift_geometry(
county_sf,
geoid_column = NULL,
preserve_area = FALSE,
position = c("below", "outside")
)
st_sf <- tigris::states(year = 2010, cb = TRUE) %>% filter(STATE != "72")
# Shift geometric locations of AK and HI
st_sf <- shift_geometry(
st_sf,
geoid_column = NULL,
preserve_area = FALSE,
position = c("below", "outside")
)
# Join our NMTC projects data with our shapefile geocoordinates
svi_national_county_nmtc_sf <- left_join(svi_national_county_nmtc_projects, county_sf, join_by("FIPS_st" == "STATEFP", "FIPS_county" == "COUNTYFP"))
svi_national_county_nmtc_sf %>% head(5) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
State | County | Division | post10_nmtc_project_cnt | tract_cnt | post10_nmtc_project_dollars | post10_nmtc_dollars_formatted | fips_county_st | FIPS_st | FIPS_county | state_name | region_number | region | division_number | flag_count10 | pop10 | flag_by_pop10 | flag_count_quantile10 | flag_pop_quantile10 | flag_count20 | pop20 | flag_by_pop20 | flag_count_quantile20 | flag_pop_quantile20 | county_name | GEO_ID | STATE | COUNTY | NAME | LSAD | CENSUSAREA | geometry |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AK | Aleutians East Borough | Pacific Division | 1 | 1 | 15762500 | $15,762,500 | 02013 | 02 | 013 | Alaska | 4 | West Region | 9 | 8 | 3703 | 0.0021604 | 0.4 | 1.0 | 5 | 3389 | 0.0014754 | 0.2 | 0.8 | Aleutians East Borough, AK | 0500000US02013 | 02 | 013 | Aleutians East | Borough | 6981.943 | MULTIPOLYGON (((-2385249 -1... |
AK | Anchorage Municipality | Pacific Division | 1 | 13 | 9800000 | $9,800,000 | 02020 | 02 | 020 | Alaska | 4 | West Region | 9 | 72 | 64432 | 0.0011175 | 1.0 | 0.4 | 87 | 69679 | 0.0012486 | 1.0 | 0.6 | Anchorage Municipality, AK | 0500000US02020 | 02 | 020 | Anchorage | Muny | 1704.683 | MULTIPOLYGON (((-1927463 -1... |
AK | Wade Hampton Census Area | Pacific Division | 1 | 1 | 21420000 | $21,420,000 | 02270 | 02 | 270 | Alaska | 4 | West Region | 9 | 9 | 7398 | 0.0012165 | 0.4 | 0.6 | 10 | 8298 | 0.0012051 | 0.4 | 0.6 | Wade Hampton Census Area, AK | 0500000US02270 | 02 | 270 | Wade Hampton | CA | 17081.433 | MULTIPOLYGON (((-2310112 -1... |
AK | Yukon-Koyukuk Census Area | Pacific Division | 1 | 3 | 7644000 | $7,644,000 | 02290 | 02 | 290 | Alaska | 4 | West Region | 9 | 27 | 4027 | 0.0067047 | 0.8 | 1.0 | 31 | 3979 | 0.0077909 | 0.8 | 1.0 | Yukon-Koyukuk Census Area, AK | 0500000US02290 | 02 | 290 | Yukon-Koyukuk | CA | 145504.789 | MULTIPOLYGON (((-1736112 -9... |
AL | Baldwin County | East South Central Division | 4 | 8 | 17268000 | $17,268,000 | 01003 | 01 | 003 | Alabama | 3 | South Region | 6 | 34 | 38458 | 0.0008841 | 0.8 | 0.4 | 34 | 46255 | 0.0007351 | 0.8 | 0.2 | Baldwin County, AL | 0500000US01003 | 01 | 003 | Baldwin | County | 1589.784 | MULTIPOLYGON (((820813.4 -7... |
# Create classes for bivariate mapping
svi_national_county_nmtc_sf <- bi_class(svi_national_county_nmtc_sf, x = flag_count10, y = post10_nmtc_project_dollars, style = "quantile", dim = 3)
# View data
svi_national_county_nmtc_sf %>% head(5) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
State | County | Division | post10_nmtc_project_cnt | tract_cnt | post10_nmtc_project_dollars | post10_nmtc_dollars_formatted | fips_county_st | FIPS_st | FIPS_county | state_name | region_number | region | division_number | flag_count10 | pop10 | flag_by_pop10 | flag_count_quantile10 | flag_pop_quantile10 | flag_count20 | pop20 | flag_by_pop20 | flag_count_quantile20 | flag_pop_quantile20 | county_name | GEO_ID | STATE | COUNTY | NAME | LSAD | CENSUSAREA | geometry | bi_class |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AK | Aleutians East Borough | Pacific Division | 1 | 1 | 15762500 | $15,762,500 | 02013 | 02 | 013 | Alaska | 4 | West Region | 9 | 8 | 3703 | 0.0021604 | 0.4 | 1.0 | 5 | 3389 | 0.0014754 | 0.2 | 0.8 | Aleutians East Borough, AK | 0500000US02013 | 02 | 013 | Aleutians East | Borough | 6981.943 | MULTIPOLYGON (((-2385249 -1... | 1-2 |
AK | Anchorage Municipality | Pacific Division | 1 | 13 | 9800000 | $9,800,000 | 02020 | 02 | 020 | Alaska | 4 | West Region | 9 | 72 | 64432 | 0.0011175 | 1.0 | 0.4 | 87 | 69679 | 0.0012486 | 1.0 | 0.6 | Anchorage Municipality, AK | 0500000US02020 | 02 | 020 | Anchorage | Muny | 1704.683 | MULTIPOLYGON (((-1927463 -1... | 2-2 |
AK | Wade Hampton Census Area | Pacific Division | 1 | 1 | 21420000 | $21,420,000 | 02270 | 02 | 270 | Alaska | 4 | West Region | 9 | 9 | 7398 | 0.0012165 | 0.4 | 0.6 | 10 | 8298 | 0.0012051 | 0.4 | 0.6 | Wade Hampton Census Area, AK | 0500000US02270 | 02 | 270 | Wade Hampton | CA | 17081.433 | MULTIPOLYGON (((-2310112 -1... | 1-3 |
AK | Yukon-Koyukuk Census Area | Pacific Division | 1 | 3 | 7644000 | $7,644,000 | 02290 | 02 | 290 | Alaska | 4 | West Region | 9 | 27 | 4027 | 0.0067047 | 0.8 | 1.0 | 31 | 3979 | 0.0077909 | 0.8 | 1.0 | Yukon-Koyukuk Census Area, AK | 0500000US02290 | 02 | 290 | Yukon-Koyukuk | CA | 145504.789 | MULTIPOLYGON (((-1736112 -9... | 2-1 |
AL | Baldwin County | East South Central Division | 4 | 8 | 17268000 | $17,268,000 | 01003 | 01 | 003 | Alabama | 3 | South Region | 6 | 34 | 38458 | 0.0008841 | 0.8 | 0.4 | 34 | 46255 | 0.0007351 | 0.8 | 0.2 | Baldwin County, AL | 0500000US01003 | 01 | 003 | Baldwin | County | 1589.784 | MULTIPOLYGON (((820813.4 -7... | 2-2 |
Finally we can create our map:
# Create map with ggplot
svi_national_county_nmtc_map <- ggplot() +
# Map county shapefile, fill with bi_class categories
geom_sf(data = svi_national_county_nmtc_sf, mapping = aes(geometry=geometry, fill = bi_class), color = "white", size = 0.1, show.legend = FALSE) +
# Set to biscale palette
bi_scale_fill(pal = "GrPink", dim = 3) +
# Add state shapefiles for outline
geom_sf(data=st_sf, color="black", fill=NA, linewidth=.5, aes(geometry=geometry)) +
labs(
title = "Correlation of 2010 National SVI Flag Count and 2011 - 2020 NMTC Tax Dollars",
) +
# Set them to biscale
bi_theme(base_size = 10)
# Create biscale legend
svi_national_county_nmtc_legend <- bi_legend(pal = "GrPink",
dim = 3,
xlab = "SVI Flag Count",
ylab = "NMTC Dollars",
size = 8)
# Combine map with legend using cowplot
svi_national_county_nmtc_bivarmap <- ggdraw() +
draw_plot(svi_national_county_nmtc_map) +
# Set legend location
draw_plot(svi_national_county_nmtc_legend, x= -.02, y = -.05,
width=.20)
# View map
svi_national_county_nmtc_bivarmap
Here we can see the distribution of our counties with NMTC projects based on the correlation between 2010 SVI Flag Count and NMTC dollars.
For example, we can see several counties in WI have moderate-to-high amounts of NMTC dollars even though they have relatively low SVI amounts:
State County flag_count10 post10_nmtc_dollars_formatted
1 WI Milwaukee County 984 $315,495,493
2 WI Brown County 82 $22,110,000
3 WI Dane County 74 $46,498,037
4 WI Rock County 72 $29,580,000
5 WI Kenosha County 61 $36,800,000
6 WI Sheboygan County 26 $7,305,000
PA has a cluster of counties with moderate-to-high SVI flag counts and corresponding moderate-to-high NMTC dollar amounts:
State County flag_count10 post10_nmtc_dollars_formatted
1 PA Philadelphia County 1906 $550,969,964
2 PA Allegheny County 731 $244,342,400
3 PA Delaware County 235 $14,190,000
4 PA Berks County 225 $7,840,000
5 PA Erie County 178 $7,358,392
6 PA Dauphin County 137 $32,123,500
Arizona has several high SVI Flag and high NMTC dollar counties and a moderate SVI Flag, low NMTC dollar county:
State County flag_count10 post10_nmtc_dollars_formatted
1 AZ Maricopa County 2453 $84,923,464
2 AZ Pima County 728 $36,122,128
3 AZ Yuma County 276 $1,454,000
4 AZ Pinal County 203 $37,224,559
5 AZ Navajo County 189 $46,134,750
6 AZ Apache County 129 $12,544,000
We can now repeat our analysis for the LIHTC to identify if there is a relationship between dollars counties received from this program .
Recall that we will want to review our summary statistics, a scatterplot, and a calculation of Pearson’s r to measure the correlation.
First let’s create a dataset of only counties with LIHTC projects:
Now let’s review the summary statistics for our data set:
summary(svi_national_county_lihtc_projects$flag_count10)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0 17.0 33.0 104.6 113.5 2457.0
summary(svi_national_county_lihtc_projects$post10_lihtc_project_dollars)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0 368649 833390 2747385 2597486 50547731
Note that unlike the NMTC program, there are instances where there are tracts with LIHTC projects, but they did not receive any funding. We want to filter these out of our data set for the purposes of our analysis of the relationship between LIHTC dollars and the SVI flags.
Now we can view the updated summaries:
summary(svi_national_county_lihtc_projects$flag_count10)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0 17.0 34.0 109.8 112.5 2457.0
summary(svi_national_county_lihtc_projects$post10_lihtc_project_dollars)
Min. 1st Qu. Median Mean 3rd Qu. Max.
56314 605483 1275416 3233901 3424308 50547731
Much like the NMTC program, there’s quite a spread of values. Once again, the minimum flag count for the LIHTC program is 0, however the maximum is only 2,457 compared to over 9,000 for NMTC. The LIHTC dollar amount range is narrower, but starts much higher from ~$56,000 in tax credits to nearly ~$51 million. Once again, let’s view this visually in a scatterplot:
# Scatterplot
# y is our independent variable (LIHTC Project Dollars),
# x is our dependent variable (SVI flag count)
ggplot2::ggplot(svi_national_county_lihtc_projects,
aes(x=flag_count10,
y=post10_lihtc_project_dollars)) +
geom_point() +
geom_smooth(method="lm") +
scale_y_continuous(labels = scales::dollar_format())
# Pearson's r calculation
cor(svi_national_county_lihtc_projects$flag_count10, svi_national_county_lihtc_projects$post10_lihtc_project_dollars, method = "pearson")
[1] 0.7368838
Similar to the NMTC, we can see that when we consider ALL counties, we have a strong positive correlation between SVI Flag Counts in 2010 and and LIHTC dollars from 2011-2020, suggesting that counties that had more social vulnerability in 2010 received more LIHTC dollars in 2011-2020.
However, once again, we can also see that our data is not in a continuous line. In fact, we appear to have a few more clusters in the LIHTC program data than we had for the NMTC.
The bulk of our data points are once again clustered in the bottom left corner. We have a few more clusters above those and then a single data point all the way in the top right of our plot.
We can use a box plot to look closer at this:
boxplot(svi_national_county_lihtc_projects$flag_count10)
boxplot.stats(svi_national_county_lihtc_projects$flag_count10)$out %>% sort(decreasing = TRUE)
[1] 2457 1254 1135 1002 835 560 475 440 418 403 402 340 327 323 303
[16] 296 293 276 271 263
This is our same influential point from Los Angeles County, CA:
State County Division post10_lihtc_project_cnt tract_cnt
1 CA Los Angeles County Pacific Division 58 238
post10_lihtc_project_dollars post10_lihtc_dollars_formatted fips_county_st
1 50547731 $50,547,731 06037
FIPS_st FIPS_county state_name region_number region division_number
1 06 037 California 4 West Region 9
flag_count10 pop10 flag_by_pop10 flag_count_quantile10 flag_pop_quantile10
1 2457 988225 0.002486276 1 0.6
flag_count20 pop20 flag_by_pop20 flag_count_quantile20 flag_pop_quantile20
1 2272 991036 0.00229255 1 0.6
county_name
1 Los Angeles County, CA
GEOID_2010_trt F_TOTAL_10 post10_lihtc_project_dollars
Length:238 Min. : 6.00 Min. : 0
Class :character 1st Qu.:10.00 1st Qu.: 0
Mode :character Median :10.00 Median : 0
Mean :10.32 Mean : 212385
3rd Qu.:11.00 3rd Qu.: 0
Max. :13.00 Max. :4945372
Looking at the summary stats for LA County, we can again quickly conclude that we have not made an error in our calculations, there are indeed 238 tracts in our Los Angeles County data set and with a median total SVI Flag count (at top 25% vulnerability) of 10 per tract and a max of 13 per tract, it’s reasonable to have ~2500 flags.
238*10
[1] 2380
238*13
[1] 3094
Similarly, the max tract has $4,945,372 LIHTC dollars while the mean tract has $212,385 dollars.
Therefore, we can conclude that there is no reason to exclude LA County from our national analysis of the relationship between SVI Flag Counts in 2010 and LIHTC Dollars from 2011-2020.
Now recall from our NMTC analysis that we can utilize an algorithm known as k-means clustering
to create clusters within our data set and examine each of the groupings separately.
Once again, we first need to create a dataset of just our variables of interest and set our county_name column to the rownames since only numeric values can be entered into the kmeans() function.
We also want to double-check that all null values are absent from the data set and use scale() to convert our data to a comparable range:
svi_national_lihtc_cluster <- svi_national_county_lihtc_projects %>%
select(county_name, post10_lihtc_project_dollars,
flag_count10) %>%
remove_rownames %>%
column_to_rownames(var="county_name")
# Remove nulls, if in dataset
svi_national_lihtc_cluster <- na.omit(svi_national_lihtc_cluster)
# Scale numeric variables
svi_national_lihtc_cluster <- scale(svi_national_lihtc_cluster)
svi_national_lihtc_cluster %>% head(5)
post10_lihtc_project_dollars flag_count10
Dale County, AL -0.4426510 -0.4100636
Mobile County, AL -0.4215575 0.1570056
Craighead County, AR -0.1126573 -0.4100636
Jefferson County, AR -0.4806216 -0.2744601
Pope County, AR -0.4860654 -0.4265004
Next we can try a few different cluster numbers and allow the algorithm to search through 25 sets to identify the best groupings for each number:
set.seed(123)
k2_lihtc_nat <- kmeans(svi_national_lihtc_cluster, centers = 2, nstart = 25)
set.seed(123)
k3_lihtc_nat <- kmeans(svi_national_lihtc_cluster, centers = 3, nstart = 25)
set.seed(123)
k4_lihtc_nat <- kmeans(svi_national_lihtc_cluster, centers = 4, nstart = 25)
set.seed(123)
k5_lihtc_nat <- kmeans(svi_national_lihtc_cluster, centers = 5, nstart = 25)
Next we can view the plots to visually check the groupings and see if there’s any overlap:
# plots to compare
p_k2_lihtc_nat <- factoextra::fviz_cluster(k2_lihtc_nat, geom = "point", data = svi_national_lihtc_cluster) + ggtitle("k = 2")
p_k3_lihtc_nat <- factoextra::fviz_cluster(k3_lihtc_nat, geom = "point", data = svi_national_lihtc_cluster) + ggtitle("k = 3")
p_k4_lihtc_nat <- factoextra::fviz_cluster(k4_lihtc_nat, geom = "point", data = svi_national_lihtc_cluster) + ggtitle("k = 4")
p_k5_lihtc_nat <- factoextra::fviz_cluster(k5_lihtc_nat, geom = "point", data = svi_national_lihtc_cluster) + ggtitle("k = 5")
grid.arrange(p_k2_lihtc_nat, p_k3_lihtc_nat, p_k4_lihtc_nat, p_k5_lihtc_nat, nrow = 2)
Once more visually group counts 3 and 4 appear to provide the best options without too much overlap.
However, we’ll run our Elbow Plot function again to confirm:
elbow_plot(svi_national_lihtc_cluster)
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
[1] 6
[1] 7
[1] 8
[1] 9
[1] 10
[1] 11
[1] 12
[1] 13
[1] 14
[1] 15
Here we can see that the spacing between clusters decreases substantially after 3. Thus, we will go with 3 clusters again:
p_k3_lihtc_nat <- factoextra::fviz_cluster(k3_lihtc_nat, geom = "point", data = svi_national_lihtc_cluster) + ggtitle("k = 3")
p_k3_lihtc_nat
We can then transform our cluster matrix back to a data frame and assign these clusters to our counties:
svi_national_lihtc_cluster_label <- as.data.frame(svi_national_lihtc_cluster) %>%
rownames_to_column(var = "county_name") %>%
as_tibble() %>%
mutate(cluster = k3_lihtc_nat$cluster) %>%
select(county_name, cluster)
svi_national_county_lihtc_projects2 <- left_join(svi_national_county_lihtc_projects, svi_national_lihtc_cluster_label, join_by(county_name == county_name))
# View county counts in each cluster
table(svi_national_county_lihtc_projects2$cluster)
1 2 3
164 27 1
Now we can re-examine the correlation between 2010 SVI Flag Counts and LIHTC Project Dollars for each subset of our data.
First recall our overall outcomes:
# Overall Scatterplot
# y is our independent variable (LIHTC Project Dollars),
# x is our dependent variable (SVI flag count)
ggplot2::ggplot(svi_national_county_lihtc_projects2,
aes(x=flag_count10,
y=post10_lihtc_project_dollars)) +
geom_point() +
geom_smooth(method="lm") +
scale_y_continuous(labels = scales::dollar_format())
# Pearson's r calculation
cor(svi_national_county_lihtc_projects2$flag_count10, svi_national_county_lihtc_projects2$post10_lihtc_project_dollars, method = "pearson")
[1] 0.7368838
Now let’s look at our lower end counties in cluster 1 (bottom left corner):
# Cluster 1 Scatterplot
# y is our independent variable (LIHTC Project Dollars),
# x is our dependent variable (SVI flag count)
svi_national_county_lihtc_projects2 %>%
filter(cluster == 1) %>%
ggplot2::ggplot(aes(x=flag_count10,
y=post10_lihtc_project_dollars)) +
geom_point() +
geom_smooth(method="lm") +
scale_y_continuous(labels = scales::dollar_format())
flag_count10 post10_lihtc_project_dollars
flag_count10 1.0000000 0.2812405
post10_lihtc_project_dollars 0.2812405 1.0000000
Here we can see our correlation has dropped from strong to weak. As we can see, there are still several sub-clusters in our data. Thus, we can confirm that LA County has a strong influence on our correlation.
We can also conclude that there may not be as strong of a relationship between SVI Flags and the LIHTC dollars. This could partly be because the LIHTC credit program is meant to target low income households, but is not as tied to low income communities as the NMTC.
We can see some of these cluster 1 counties here:
county_name | flag_count10 | post10_lihtc_dollars_formatted |
---|---|---|
Queens County, NY | 296 | $4,094,899 |
Oklahoma County, OK | 293 | $590,000 |
Orleans Parish, LA | 276 | $3,558,074 |
Sacramento County, CA | 207 | $4,065,883 |
Passaic County, NJ | 206 | $4,564,679 |
Hartford County, CT | 203 | $256,961 |
Alameda County, CA | 202 | $1,590,984 |
Erie County, NY | 167 | $2,220,667 |
Shelby County, TN | 167 | $201,735 |
Monroe County, NY | 165 | $4,944,903 |
Now let’s examine our mid-range points in Cluster 2:
# Cluster 2 Scatterplot
# y is our independent variable (LIHTC Project Dollars),
# x is our dependent variable (SVI flag count)
svi_national_county_lihtc_projects2 %>%
filter(cluster == 2) %>%
ggplot2::ggplot(aes(x=flag_count10,
y=post10_lihtc_project_dollars)) +
geom_point() +
geom_smooth(method="lm") +
scale_y_continuous(labels = scales::dollar_format())
flag_count10 post10_lihtc_project_dollars
flag_count10 1.00000000 -0.02464747
post10_lihtc_project_dollars -0.02464747 1.00000000
Again, our mid range points are scattered and have a very weak correlation that skews slightly negative, but doesn’t have enough strength for us to confidently draw conclusions.
Rather, it seems the amount of money given to counties with 0 - 1250 SVI flags varied widely between less than $10 million to over $20 million.
We can view these counties here:
county_name | flag_count10 | post10_lihtc_dollars_formatted |
---|---|---|
Cook County, IL | 1254 | $6,872,376 |
Kings County, NY | 1135 | $26,054,976 |
Wayne County, MI | 1002 | $11,226,253 |
Harris County, TX | 835 | $179,539 |
Essex County, NJ | 560 | $7,410,996 |
Maricopa County, AZ | 475 | $13,115,292 |
Bronx County, NY | 440 | $19,909,800 |
Cuyahoga County, OH | 418 | $4,515,742 |
District of Columbia, DC | 403 | $11,695,555 |
San Diego County, CA | 402 | $20,961,962 |
Milwaukee County, WI | 340 | $11,454,416 |
Baltimore city, MD | 327 | $6,501,415 |
Orange County, CA | 323 | $10,245,926 |
Miami-Dade County, FL | 303 | $12,039,478 |
Riverside County, CA | 271 | $6,335,483 |
San Bernardino County, CA | 263 | $5,757,810 |
Philadelphia County, PA | 253 | $6,805,843 |
New York County, NY | 202 | $9,337,368 |
Allegheny County, PA | 191 | $8,889,633 |
Hennepin County, MN | 178 | $8,327,899 |
Onondaga County, NY | 152 | $18,599,402 |
Tulsa County, OK | 146 | $8,175,983 |
Hillsborough County, FL | 143 | $10,116,734 |
San Francisco County, CA | 79 | $11,194,380 |
Delaware County, IN | 31 | $17,000,000 |
Vigo County, IN | 22 | $18,646,385 |
Mesa County, CO | 13 | $15,437,500 |
Finally, let’s look at our cluster 3 data (top right corner):
# Cluster 3 Scatterplot
# y is our independent variable (LIHTC Project Dollars),
# x is our dependent variable (SVI flag count)
svi_national_county_lihtc_projects2 %>%
filter(cluster == 3) %>%
ggplot2::ggplot(aes(x=flag_count10,
y=post10_lihtc_project_dollars)) +
geom_point() +
geom_smooth(method="lm") +
scale_y_continuous(labels = scales::dollar_format())
flag_count10 post10_lihtc_project_dollars
flag_count10 NA NA
post10_lihtc_project_dollars NA NA
Since there is only 1 point, we can’t calculate a correlation, but we can confirm that this point is LA County:
county_name | flag_count10 | post10_lihtc_dollars_formatted |
---|---|---|
Los Angeles County, CA | 2457 | $50,547,731 |
Now let’s view this relationship spatially by creating another bivariate map:
# Join our LIHTC projects data with our shapefile geocoordinates
svi_national_county_lihtc_sf <- left_join(svi_national_county_lihtc_projects, county_sf, join_by("FIPS_st" == "STATEFP", "FIPS_county" == "COUNTYFP"))
svi_national_county_lihtc_sf %>% head(5) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
State | County | Division | post10_lihtc_project_cnt | tract_cnt | post10_lihtc_project_dollars | post10_lihtc_dollars_formatted | fips_county_st | FIPS_st | FIPS_county | state_name | region_number | region | division_number | flag_count10 | pop10 | flag_by_pop10 | flag_count_quantile10 | flag_pop_quantile10 | flag_count20 | pop20 | flag_by_pop20 | flag_count_quantile20 | flag_pop_quantile20 | county_name | GEO_ID | STATE | COUNTY | NAME | LSAD | CENSUSAREA | geometry |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AL | Dale County | East South Central Division | 1 | 2 | 801670 | $801,670 | 01045 | 01 | 045 | Alabama | 3 | South Region | 6 | 10 | 4943 | 0.0020231 | 0.4 | 0.4 | 15 | 4853 | 0.0030909 | 0.6 | 0.8 | Dale County, AL | 0500000US01045 | 01 | 045 | Dale | County | 561.150 | MULTIPOLYGON (((966402.4 -6... |
AL | Mobile County | East South Central Division | 1 | 18 | 917572 | $917,572 | 01097 | 01 | 097 | Alabama | 3 | South Region | 6 | 148 | 41977 | 0.0035257 | 1.0 | 0.8 | 126 | 34483 | 0.0036540 | 1.0 | 0.8 | Mobile County, AL | 0500000US01097 | 01 | 097 | Mobile | County | 1229.435 | MULTIPOLYGON (((763284.2 -7... |
AR | Craighead County | West South Central Division | 6 | 1 | 2614884 | $2,614,884 | 05031 | 05 | 031 | Arkansas | 3 | South Region | 7 | 10 | 5701 | 0.0017541 | 0.4 | 0.4 | 9 | 6088 | 0.0014783 | 0.4 | 0.2 | Craighead County, AR | 0500000US05031 | 05 | 031 | Craighead | County | 707.206 | MULTIPOLYGON (((509938.5 -1... |
AR | Jefferson County | West South Central Division | 1 | 5 | 593033 | $593,033 | 05069 | 05 | 069 | Arkansas | 3 | South Region | 7 | 43 | 14174 | 0.0030337 | 1.0 | 0.8 | 39 | 11370 | 0.0034301 | 0.8 | 0.8 | Jefferson County, AR | 0500000US05069 | 05 | 069 | Jefferson | County | 870.746 | MULTIPOLYGON (((391413.8 -3... |
AR | Pope County | West South Central Division | 1 | 1 | 563121 | $563,121 | 05115 | 05 | 115 | Arkansas | 3 | South Region | 7 | 6 | 4220 | 0.0014218 | 0.2 | 0.2 | 9 | 4890 | 0.0018405 | 0.4 | 0.4 | Pope County, AR | 0500000US05115 | 05 | 115 | Pope | County | 812.548 | MULTIPOLYGON (((243262.7 -2... |
# Create classes for bivariate mapping
svi_national_county_lihtc_sf <- bi_class(svi_national_county_lihtc_sf, x = flag_count10, y = post10_lihtc_project_dollars, style = "quantile", dim = 3)
# View data
svi_national_county_lihtc_sf %>% head(5) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
State | County | Division | post10_lihtc_project_cnt | tract_cnt | post10_lihtc_project_dollars | post10_lihtc_dollars_formatted | fips_county_st | FIPS_st | FIPS_county | state_name | region_number | region | division_number | flag_count10 | pop10 | flag_by_pop10 | flag_count_quantile10 | flag_pop_quantile10 | flag_count20 | pop20 | flag_by_pop20 | flag_count_quantile20 | flag_pop_quantile20 | county_name | GEO_ID | STATE | COUNTY | NAME | LSAD | CENSUSAREA | geometry | bi_class |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AL | Dale County | East South Central Division | 1 | 2 | 801670 | $801,670 | 01045 | 01 | 045 | Alabama | 3 | South Region | 6 | 10 | 4943 | 0.0020231 | 0.4 | 0.4 | 15 | 4853 | 0.0030909 | 0.6 | 0.8 | Dale County, AL | 0500000US01045 | 01 | 045 | Dale | County | 561.150 | MULTIPOLYGON (((966402.4 -6... | 1-2 |
AL | Mobile County | East South Central Division | 1 | 18 | 917572 | $917,572 | 01097 | 01 | 097 | Alabama | 3 | South Region | 6 | 148 | 41977 | 0.0035257 | 1.0 | 0.8 | 126 | 34483 | 0.0036540 | 1.0 | 0.8 | Mobile County, AL | 0500000US01097 | 01 | 097 | Mobile | County | 1229.435 | MULTIPOLYGON (((763284.2 -7... | 3-2 |
AR | Craighead County | West South Central Division | 6 | 1 | 2614884 | $2,614,884 | 05031 | 05 | 031 | Arkansas | 3 | South Region | 7 | 10 | 5701 | 0.0017541 | 0.4 | 0.4 | 9 | 6088 | 0.0014783 | 0.4 | 0.2 | Craighead County, AR | 0500000US05031 | 05 | 031 | Craighead | County | 707.206 | MULTIPOLYGON (((509938.5 -1... | 1-3 |
AR | Jefferson County | West South Central Division | 1 | 5 | 593033 | $593,033 | 05069 | 05 | 069 | Arkansas | 3 | South Region | 7 | 43 | 14174 | 0.0030337 | 1.0 | 0.8 | 39 | 11370 | 0.0034301 | 0.8 | 0.8 | Jefferson County, AR | 0500000US05069 | 05 | 069 | Jefferson | County | 870.746 | MULTIPOLYGON (((391413.8 -3... | 2-1 |
AR | Pope County | West South Central Division | 1 | 1 | 563121 | $563,121 | 05115 | 05 | 115 | Arkansas | 3 | South Region | 7 | 6 | 4220 | 0.0014218 | 0.2 | 0.2 | 9 | 4890 | 0.0018405 | 0.4 | 0.4 | Pope County, AR | 0500000US05115 | 05 | 115 | Pope | County | 812.548 | MULTIPOLYGON (((243262.7 -2... | 1-1 |
Finally we can create our map:
# Create map with ggplot
svi_national_county_lihtc_map <- ggplot() +
# Map county shapefile, fill with bi_class categories
geom_sf(data = svi_national_county_lihtc_sf, mapping = aes(geometry=geometry, fill = bi_class), color = "white", size = 0.1, show.legend = FALSE) +
# Set to biscale palette
bi_scale_fill(pal = "GrPink", dim = 3) +
# Add state shapefiles for outline
geom_sf(data=st_sf, color="black", fill=NA, linewidth=.5, aes(geometry=geometry)) +
labs(
title = "Correlation of 2010 National SVI Flag Count and 2011 - 2020 LIHTC Tax Dollars",
) +
# Set them to biscale
bi_theme(base_size = 10)
# Create biscale legend
svi_national_county_lihtc_legend <- bi_legend(pal = "GrPink",
dim = 3,
xlab = "SVI Flag Count",
ylab = "LIHTC Dollars",
size = 8)
# Combine map with legend using cowplot
svi_national_county_lihtc_bivarmap <- ggdraw() +
draw_plot(svi_national_county_lihtc_map) +
# Set legend location
draw_plot(svi_national_county_lihtc_legend, x= -.02, y = -.05,
width=.20)
# View map
svi_national_county_lihtc_bivarmap
Here we can see the distribution of our LIHTC counties is quite a bit less than our NMTC projects. However, we can once again review the correlation between 2010 SVI Flag Count and LIHTC dollars.
For example, we can see a few counties in CO that have moderate-to-high amounts of LIHTC dollars even though they have relatively low SVI flag counts:
State County flag_count10 post10_lihtc_dollars_formatted
1 CO Denver County 69 $5,226,128
2 CO El Paso County 18 $1,011,891
3 CO Larimer County 17 $2,609,648
4 CO Mesa County 13 $15,437,500
CA has a cluster of counties with moderate-to-high SVI flag counts and corresponding moderate-to-high LIHTC dollar amounts:
State County flag_count10 post10_lihtc_dollars_formatted
1 CA Los Angeles County 2457 $50,547,731
2 CA San Diego County 402 $20,961,962
3 CA Orange County 323 $10,245,926
4 CA Riverside County 271 $6,335,483
5 CA San Bernardino County 263 $5,757,810
6 CA Sacramento County 207 $4,065,883
Now that we have done a walk-through of the national trends of the NMTC and LIHTC data, let’s zone into our census division:
Create projects df:
Check that our expected division is loaded:
Division
1 Middle Atlantic Division
Now let’s review the summary statistics for our data set:
summary(svi_divisional_county_nmtc_projects$flag_count10)
Min. 1st Qu. Median Mean 3rd Qu. Max.
5.00 54.75 134.50 399.71 346.00 3869.00
summary(svi_divisional_county_nmtc_projects$post10_nmtc_project_dollars)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1460000 7800000 16225000 51968192 41860000 550969964
As we can see from the summary statistics, there’s also quite a spread of values across counties in the Middle Atlantic Division from 5 SVI flags to over 3,800 and ~$1.5 million in tax credits to over $.5bn. Let’s view this visually in a scatterplot:
# Scatterplot
# y is our independent variable (NMTC Project Dollars),
# x is our dependent variable (SVI flag count)
ggplot2::ggplot(svi_divisional_county_nmtc_projects,
aes(x=flag_count10,
y=post10_nmtc_project_dollars)) +
geom_point() +
geom_smooth(method="lm") +
scale_y_continuous(labels = scales::dollar_format())
# Pearson's r calculation
cor(svi_divisional_county_nmtc_projects$flag_count10, svi_divisional_county_nmtc_projects$post10_nmtc_project_dollars, method = "pearson")
[1] 0.7085789
Here we have a similar pattern to the national data, though the top right outlier is not quite as extreme.
We have a strong positive correlation between SVI Flag Counts in 2010, suggesting that counties that had more social vulnerability in 2010 received more NMTC tax credit dollars in 2011-2020.
However, our data is not in a perfect, continuous line. Rather, we have the majority of our data clustered in the bottom left corner and some scatter across the plot.
We can use a box plot to look closer at this:
boxplot(svi_divisional_county_nmtc_projects$flag_count10)
boxplot.stats(svi_divisional_county_nmtc_projects$flag_count10)$out %>% sort(decreasing = TRUE)
[1] 3869 2688 2347 1961 1019 879 841
While our 7 outliers are closer together, we can still see that our county with 3,869 has over 1,000 more SVI flags than the next county:
We can filter our data set to identify these:
county_name | flag_count10 | post10_nmtc_dollars_formatted |
---|---|---|
Kings County, NY | 3869 | $216,348,600 |
Bronx County, NY | 2688 | $306,355,715 |
Queens County, NY | 2347 | $85,225,100 |
Philadelphia County, PA | 1961 | $550,969,964 |
Essex County, NJ | 1019 | $81,662,084 |
New York County, NY | 879 | $255,545,686 |
Hudson County, NJ | 841 | $110,136,049 |
Now let’s examine our divisional data in segments:
svi_divisional_nmtc_cluster <- svi_divisional_county_nmtc_projects %>%
select(county_name, post10_nmtc_project_dollars,
flag_count10) %>%
remove_rownames %>%
column_to_rownames(var="county_name")
# Remove nulls, if in dataset
svi_divisional_nmtc_cluster <- na.omit(svi_divisional_nmtc_cluster)
# Scale numeric variables
svi_divisional_nmtc_cluster <- scale(svi_divisional_nmtc_cluster)
svi_divisional_nmtc_cluster %>% head(5)
post10_nmtc_project_dollars flag_count10
Bergen County, NJ -0.4296451 -0.3418568
Camden County, NJ 0.2835350 -0.0912361
Cumberland County, NJ -0.1922645 -0.3526362
Essex County, NJ 0.3039882 0.8344437
Hudson County, NJ 0.5954875 0.5946023
Next we can try a few different cluster numbers and allow the algorithm to search through 25 sets to identify the best groupings for each number:
set.seed(123)
k2_nmtc_div <- kmeans(svi_divisional_nmtc_cluster, centers = 2, nstart = 25)
set.seed(123)
k3_nmtc_div <- kmeans(svi_divisional_nmtc_cluster, centers = 3, nstart = 25)
set.seed(123)
k4_nmtc_div <- kmeans(svi_divisional_nmtc_cluster, centers = 4, nstart = 25)
set.seed(123)
k5_nmtc_div <- kmeans(svi_divisional_nmtc_cluster, centers = 5, nstart = 25)
Next we can view the plots to visually check the groupings and see if there’s any overlap:
# plots to compare
p_k2_nmtc_div <- factoextra::fviz_cluster(k2_nmtc_div, geom = "point", data = svi_divisional_nmtc_cluster) + ggtitle("k = 2")
p_k3_nmtc_div <- factoextra::fviz_cluster(k3_nmtc_div, geom = "point", data = svi_divisional_nmtc_cluster) + ggtitle("k = 3")
p_k4_nmtc_div <- factoextra::fviz_cluster(k4_nmtc_div, geom = "point", data = svi_divisional_nmtc_cluster) + ggtitle("k = 4")
p_k5_nmtc_div <- factoextra::fviz_cluster(k5_nmtc_div, geom = "point", data = svi_divisional_nmtc_cluster) + ggtitle("k = 5")
grid.arrange(p_k2_nmtc_div, p_k3_nmtc_div, p_k4_nmtc_div, p_k5_nmtc_div, nrow = 2)
Here the 2 grouping appears to be the only one with multiple members across clusters, however we can confirm our visual inspection with our elbow plot:
elbow_plot(svi_divisional_nmtc_cluster)
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
[1] 6
[1] 7
[1] 8
[1] 9
[1] 10
[1] 11
[1] 12
[1] 13
[1] 14
[1] 15
Here we can see that the spacing between clusters decreases substantially after 2. Thus, we will go with 2 clusters:
p_k2_nmtc_div <- factoextra::fviz_cluster(k2_nmtc_div, geom = "point", data = svi_divisional_nmtc_cluster) + ggtitle("k = 2")
p_k2_nmtc_div
We can then transform our cluster matrix back to a data frame and assign these clusters to our counties:
svi_divisional_nmtc_cluster_label <- as.data.frame(svi_divisional_nmtc_cluster) %>%
rownames_to_column(var = "county_name") %>%
as_tibble() %>%
mutate(cluster = k2_nmtc_div$cluster) %>%
select(county_name, cluster)
svi_divisional_county_nmtc_projects2 <- left_join(svi_divisional_county_nmtc_projects, svi_divisional_nmtc_cluster_label, join_by(county_name == county_name))
# View county counts in each cluster
table(svi_divisional_county_nmtc_projects2$cluster)
1 2
6 46
Now we can re-examine the correlation between 2010 SVI Flag Counts and NMTC Project Dollars for each subset of our data.
First recall our overall outcomes:
# Overall Scatterplot
# y is our independent variable (NMTC Project Dollars),
# x is our dependent variable (SVI flag count)
ggplot2::ggplot(svi_divisional_county_nmtc_projects2,
aes(x=flag_count10,
y=post10_nmtc_project_dollars)) +
geom_point() +
geom_smooth(method="lm") +
scale_y_continuous(labels = scales::dollar_format())
# Pearson's r calculation
cor(svi_divisional_county_nmtc_projects2$flag_count10, svi_divisional_county_nmtc_projects2$post10_nmtc_project_dollars, method = "pearson")
[1] 0.7085789
Now let’s look at our smaller cluster of points in Cluster 1:
# Cluster 1 Scatterplot
# y is our independent variable (NMTC Project Dollars),
# x is our dependent variable (SVI flag count)
svi_divisional_county_nmtc_projects2 %>%
filter(cluster == 1) %>%
ggplot2::ggplot(aes(x=flag_count10,
y=post10_nmtc_project_dollars)) +
geom_point() +
geom_smooth(method="lm") +
scale_y_continuous(labels = scales::dollar_format())
flag_count10 post10_nmtc_project_dollars
flag_count10 1.000000 -0.114767
post10_nmtc_project_dollars -0.114767 1.000000
Here we can see that our highest data points have a very weak slightly negative to none-existent correlation on their own. Most of our counties with ~1,000 to 4,000 flags have similar amounts of NMTC dollars:
We can view these counties here:
svi_divisional_county_nmtc_projects2 %>%
filter(cluster == 1) %>%
select(county_name, flag_count10, post10_nmtc_dollars_formatted) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
county_name | flag_count10 | post10_nmtc_dollars_formatted |
---|---|---|
Bronx County, NY | 2688 | $306,355,715 |
Kings County, NY | 3869 | $216,348,600 |
New York County, NY | 879 | $255,545,686 |
Queens County, NY | 2347 | $85,225,100 |
Allegheny County, PA | 712 | $244,342,400 |
Philadelphia County, PA | 1961 | $550,969,964 |
Now let’s examine the majority of our data for Cluster 2:
# Cluster 2 Scatterplot
# y is our independent variable (NMTC Project Dollars),
# x is our dependent variable (SVI flag count)
svi_divisional_county_nmtc_projects2 %>%
filter(cluster == 2) %>%
ggplot2::ggplot(aes(x=flag_count10,
y=post10_nmtc_project_dollars)) +
geom_point() +
geom_smooth(method="lm") +
scale_y_continuous(labels = scales::dollar_format())
flag_count10 post10_nmtc_project_dollars
flag_count10 1.00000 0.72778
post10_nmtc_project_dollars 0.72778 1.00000
Here we can find that our correlation actually strengthened, indicating that the majority of our data points are in line with the trends of the overall data.
In addition, it seems the amount of money given to counties in the Middle Atlantic Division with 0 - 1,000 SVI flags is correlated with NMTC dollars from $0 to just over $90 million.
We can view these counties here:
svi_divisional_county_nmtc_projects2 %>%
filter(cluster == 2) %>%
select(county_name, flag_count10, post10_nmtc_dollars_formatted) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
county_name | flag_count10 | post10_nmtc_dollars_formatted |
---|---|---|
Bergen County, NJ | 146 | $10,000,000 |
Camden County, NJ | 332 | $79,664,200 |
Cumberland County, NJ | 138 | $33,187,593 |
Essex County, NJ | 1019 | $81,662,084 |
Hudson County, NJ | 841 | $110,136,049 |
Mercer County, NJ | 225 | $8,000,000 |
Middlesex County, NJ | 226 | $48,700,000 |
Ocean County, NJ | 163 | $1,900,000 |
Passaic County, NJ | 447 | $49,154,956 |
Union County, NJ | 344 | $20,700,000 |
Albany County, NY | 85 | $9,625,000 |
Allegany County, NY | 29 | $9,300,000 |
Broome County, NY | 131 | $5,280,000 |
Cattaraugus County, NY | 44 | $6,790,000 |
Cayuga County, NY | 27 | $6,240,000 |
Chautauqua County, NY | 76 | $39,360,000 |
Chenango County, NY | 19 | $58,819,000 |
Columbia County, NY | 14 | $9,700,000 |
Cortland County, NY | 12 | $2,000,000 |
Erie County, NY | 528 | $76,710,000 |
Monroe County, NY | 574 | $19,998,000 |
Nassau County, NY | 151 | $1,460,000 |
Onondaga County, NY | 352 | $20,428,080 |
Rensselaer County, NY | 78 | $7,020,000 |
Schenectady County, NY | 68 | $11,595,000 |
St. Lawrence County, NY | 75 | $1,920,000 |
Steuben County, NY | 58 | $7,680,000 |
Tompkins County, NY | 32 | $2,643,020 |
Westchester County, NY | 424 | $39,580,000 |
Adams County, PA | 5 | $14,161,000 |
Berks County, PA | 219 | $7,840,000 |
Clearfield County, PA | 44 | $26,360,000 |
Dauphin County, PA | 140 | $32,123,500 |
Delaware County, PA | 236 | $14,190,000 |
Erie County, PA | 184 | $7,358,392 |
Jefferson County, PA | 25 | $11,453,160 |
Lackawanna County, PA | 107 | $19,075,000 |
Lancaster County, PA | 114 | $12,514,500 |
Lebanon County, PA | 38 | $5,335,000 |
Lycoming County, PA | 55 | $25,440,000 |
Mercer County, PA | 54 | $18,440,000 |
Mifflin County, PA | 37 | $12,130,000 |
Northampton County, PA | 86 | $18,260,000 |
Washington County, PA | 76 | $12,760,000 |
Westmoreland County, PA | 108 | $6,737,500 |
York County, PA | 143 | $20,127,500 |
Thus, we can conclude here that for the majority of the counties in the Middle Atlantic Division, there’s a fairly strong positive correlation between more vulnerable counties receiving more NMTC money than less vulnerable counties.
Now let’s plot this relationship spatially:
To begin, we can load our divisional mapping data from Lab 03:
Simple feature collection with 5 features and 2 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: -75.14001 ymin: 38.92852 xmax: -73.89398 ymax: 41.13419
Geodetic CRS: NAD83
COUNTYFP STATEFP geometry
1 001 34 MULTIPOLYGON (((-74.42314 3...
2 003 34 MULTIPOLYGON (((-73.92676 4...
3 005 34 MULTIPOLYGON (((-74.99056 4...
4 007 34 MULTIPOLYGON (((-75.14001 3...
5 009 34 MULTIPOLYGON (((-74.94545 3...
# Join our NMTC projects data with our shapefile geocoordinates
svi_divisional_county_nmtc_sf <- left_join(svi_divisional_county_nmtc_projects, divisional_county_sf, join_by("FIPS_st" == "STATEFP", "FIPS_county" == "COUNTYFP"))
svi_divisional_county_nmtc_sf %>% head(5) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
State | County | Division | post10_nmtc_project_cnt | tract_cnt | post10_nmtc_project_dollars | post10_nmtc_dollars_formatted | fips_county_st | FIPS_st | FIPS_county | state_name | region_number | region | division_number | flag_count10 | pop10 | flag_by_pop10 | flag_count_quantile10 | flag_pop_quantile10 | flag_count20 | pop20 | flag_by_pop20 | flag_count_quantile20 | flag_pop_quantile20 | county_name | geometry |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NJ | Bergen County | Middle Atlantic Division | 1 | 30 | 10000000 | $10,000,000 | 34003 | 34 | 003 | New Jersey | 1 | Northeast Region | 2 | 146 | 143973 | 0.0010141 | 1.0 | 0.4 | 165 | 154365 | 0.0010689 | 1.0 | 0.4 | Bergen County, NJ | MULTIPOLYGON (((-73.92676 4... |
NJ | Camden County | Middle Atlantic Division | 5 | 47 | 79664200 | $79,664,200 | 34007 | 34 | 007 | New Jersey | 1 | Northeast Region | 2 | 332 | 183630 | 0.0018080 | 1.0 | 1.0 | 315 | 180659 | 0.0017436 | 1.0 | 0.8 | Camden County, NJ | MULTIPOLYGON (((-75.14001 3... |
NJ | Cumberland County | Middle Atlantic Division | 2 | 21 | 33187593 | $33,187,593 | 34011 | 34 | 011 | New Jersey | 1 | Northeast Region | 2 | 138 | 101151 | 0.0013643 | 0.8 | 0.6 | 135 | 97989 | 0.0013777 | 0.8 | 0.6 | Cumberland County, NJ | MULTIPOLYGON (((-75.1145 39... |
NJ | Essex County | Middle Atlantic Division | 6 | 115 | 81662084 | $81,662,084 | 34013 | 34 | 013 | New Jersey | 1 | Northeast Region | 2 | 1019 | 385872 | 0.0026408 | 1.0 | 1.0 | 1039 | 385359 | 0.0026962 | 1.0 | 1.0 | Essex County, NJ | MULTIPOLYGON (((-74.13892 4... |
NJ | Hudson County | Middle Atlantic Division | 5 | 100 | 110136049 | $110,136,049 | 34017 | 34 | 017 | New Jersey | 1 | Northeast Region | 2 | 841 | 385737 | 0.0021802 | 1.0 | 1.0 | 802 | 404100 | 0.0019847 | 1.0 | 1.0 | Hudson County, NJ | MULTIPOLYGON (((-74.02039 4... |
# Create classes for bivariate mapping
svi_divisional_county_nmtc_sf <- bi_class(svi_divisional_county_nmtc_sf, x = flag_count10, y = post10_nmtc_project_dollars, style = "quantile", dim = 3)
# View data
svi_divisional_county_nmtc_sf %>% head(5) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
State | County | Division | post10_nmtc_project_cnt | tract_cnt | post10_nmtc_project_dollars | post10_nmtc_dollars_formatted | fips_county_st | FIPS_st | FIPS_county | state_name | region_number | region | division_number | flag_count10 | pop10 | flag_by_pop10 | flag_count_quantile10 | flag_pop_quantile10 | flag_count20 | pop20 | flag_by_pop20 | flag_count_quantile20 | flag_pop_quantile20 | county_name | geometry | bi_class |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NJ | Bergen County | Middle Atlantic Division | 1 | 30 | 10000000 | $10,000,000 | 34003 | 34 | 003 | New Jersey | 1 | Northeast Region | 2 | 146 | 143973 | 0.0010141 | 1.0 | 0.4 | 165 | 154365 | 0.0010689 | 1.0 | 0.4 | Bergen County, NJ | MULTIPOLYGON (((-73.92676 4... | 2-2 |
NJ | Camden County | Middle Atlantic Division | 5 | 47 | 79664200 | $79,664,200 | 34007 | 34 | 007 | New Jersey | 1 | Northeast Region | 2 | 332 | 183630 | 0.0018080 | 1.0 | 1.0 | 315 | 180659 | 0.0017436 | 1.0 | 0.8 | Camden County, NJ | MULTIPOLYGON (((-75.14001 3... | 3-3 |
NJ | Cumberland County | Middle Atlantic Division | 2 | 21 | 33187593 | $33,187,593 | 34011 | 34 | 011 | New Jersey | 1 | Northeast Region | 2 | 138 | 101151 | 0.0013643 | 0.8 | 0.6 | 135 | 97989 | 0.0013777 | 0.8 | 0.6 | Cumberland County, NJ | MULTIPOLYGON (((-75.1145 39... | 2-3 |
NJ | Essex County | Middle Atlantic Division | 6 | 115 | 81662084 | $81,662,084 | 34013 | 34 | 013 | New Jersey | 1 | Northeast Region | 2 | 1019 | 385872 | 0.0026408 | 1.0 | 1.0 | 1039 | 385359 | 0.0026962 | 1.0 | 1.0 | Essex County, NJ | MULTIPOLYGON (((-74.13892 4... | 3-3 |
NJ | Hudson County | Middle Atlantic Division | 5 | 100 | 110136049 | $110,136,049 | 34017 | 34 | 017 | New Jersey | 1 | Northeast Region | 2 | 841 | 385737 | 0.0021802 | 1.0 | 1.0 | 802 | 404100 | 0.0019847 | 1.0 | 1.0 | Hudson County, NJ | MULTIPOLYGON (((-74.02039 4... | 3-3 |
Finally we can create our map:
# Create map with ggplot
svi_divisional_county_nmtc_map <- ggplot() +
# Map county shapefile, fill with bi_class categories
geom_sf(data = svi_divisional_county_nmtc_sf, mapping = aes(geometry=geometry, fill = bi_class), color = "white", size = 0.1, show.legend = FALSE) +
# Set to biscale palette
bi_scale_fill(pal = "GrPink", dim = 3) +
# Add state shapefiles for outline
geom_sf(data=divisional_st_sf, color="black", fill=NA, linewidth=.5, aes(geometry=geometry)) +
labs(
title = paste0("Correlation of 2010 ", census_division, " SVI Flag Count \n and 2011 - 2020 NMTC Tax Dollars"),
) +
# Set them to biscale
bi_theme(base_size = 10)
# Create biscale legend
svi_divisional_county_nmtc_legend <- bi_legend(pal = "GrPink",
dim = 3,
xlab = "SVI Flag Count",
ylab = "NMTC Dollars",
size = 8)
# Combine map with legend using cowplot
svi_divisional_county_nmtc_bivarmap <- ggdraw() +
draw_plot(svi_divisional_county_nmtc_map) +
# Set legend location
draw_plot(svi_divisional_county_nmtc_legend, x= -.02, y = -.05,
width=.20)
# View map
svi_divisional_county_nmtc_bivarmap
Here we can see the distribution of our counties with NMTC projects based on the correlation between 2010 SVI Flag Count and NMTC dollars for the Middle Atlantic Division.
Here we can see that our high NMTC dollars and high SVI flag counts are largely clustered in the NYC metro area across NY and NJ:
State | County | flag_count10 | post10_nmtc_dollars_formatted |
---|---|---|---|
NY | Kings County | 3869 | $216,348,600 |
NY | Bronx County | 2688 | $306,355,715 |
NY | Queens County | 2347 | $85,225,100 |
NJ | Essex County | 1019 | $81,662,084 |
NY | New York County | 879 | $255,545,686 |
NJ | Hudson County | 841 | $110,136,049 |
In contrast, on a divisional level PA has several counties with low SVI flag counts, but moderate-to-high NMTC dollars
State | County | flag_count10 | post10_nmtc_dollars_formatted |
---|---|---|---|
PA | Philadelphia County | 1961 | $550,969,964 |
PA | Allegheny County | 712 | $244,342,400 |
PA | Dauphin County | 140 | $32,123,500 |
PA | Clearfield County | 44 | $26,360,000 |
PA | Lycoming County | 55 | $25,440,000 |
PA | York County | 143 | $20,127,500 |
PA | Lackawanna County | 107 | $19,075,000 |
PA | Mercer County | 54 | $18,440,000 |
PA | Northampton County | 86 | $18,260,000 |
PA | Delaware County | 236 | $14,190,000 |
We can now repeat our divisional analysis for the LIHTC to identify if there is a relationship between dollars counties received from this program and the SVI flags.
Recall that we will want to review our summary statistics, a scatterplot, and a calculation of Pearson’s r to measure the correlation.
First let’s create a dataset of only counties with LIHTC projects:
Check division:
Division
1 Middle Atlantic Division
Now let’s review the summary statistics for our data set:
summary(svi_divisional_county_lihtc_projects$flag_count10)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 22.75 66.50 140.82 169.50 1154.00
summary(svi_divisional_county_lihtc_projects$post10_lihtc_project_dollars)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0 1197587 2015493 4533949 4904236 26054976
Note once again that unlike the NMTC program, there are instances where there are tracts with LIHTC projects, but they did not receive any funding. We want to filter these out of our data set for the purposes of our analysis of the relationship between LIHTC dollars and the SVI flags.
Now we can view the updated summaries:
summary(svi_divisional_county_lihtc_projects$flag_count10)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.0 20.0 66.0 142.9 170.0 1154.0
summary(svi_divisional_county_lihtc_projects$post10_lihtc_project_dollars)
Min. 1st Qu. Median Mean 3rd Qu. Max.
78558 1317572 2220667 4671341 4944903 26054976
The minimum flag count for the LIHTC program in the Middle Atlantic Division is 1 and the maximum is only 1,154 compared to 5 - 3,869 for NMTC. The LIHTC dollar amount range is $78,558 to over $26 million.
Once again, let’s view this visually in a scatterplot:
# Scatterplot
# y is our independent variable (LIHTC Project Dollars),
# x is our dependent variable (SVI flag count)
ggplot2::ggplot(svi_divisional_county_lihtc_projects,
aes(x=flag_count10,
y=post10_lihtc_project_dollars)) +
geom_point() +
geom_smooth(method="lm") +
scale_y_continuous(labels = scales::dollar_format())
# Pearson's r calculation
cor(svi_divisional_county_lihtc_projects$flag_count10, svi_divisional_county_lihtc_projects$post10_lihtc_project_dollars, method = "pearson")
[1] 0.8106627
When we consider ALL counties in the Middle Atlantic Division, we have a very strong positive correlation between SVI Flag Counts in 2010 and and LIHTC dollars from 2011-2020, suggesting that counties that had more social vulnerability in 2010 received more LIHTC dollars in 2011-2020.
However, from visual inspection it appears we have an influential point in our data as well as some scatter.
Let’s explore this in a box plot:
boxplot(svi_divisional_county_lihtc_projects$flag_count10)
boxplot.stats(svi_divisional_county_lihtc_projects$flag_count10)$out %>% sort(decreasing = TRUE)
[1] 1154 570 471
This is our same influential point from our NMTC analysis, Kings County, NY:
Now let’s conduct a cluster analysis:
svi_divisional_lihtc_cluster <- svi_divisional_county_lihtc_projects %>%
select(county_name, post10_lihtc_project_dollars,
flag_count10) %>%
remove_rownames %>%
column_to_rownames(var="county_name")
# Remove nulls, if in dataset
svi_divisional_lihtc_cluster <- na.omit(svi_divisional_lihtc_cluster)
# Scale numeric variables
svi_divisional_lihtc_cluster <- scale(svi_divisional_lihtc_cluster)
svi_divisional_lihtc_cluster %>% head(5)
post10_lihtc_project_dollars flag_count10
Atlantic County, NJ -0.52731441 -0.4795562
Essex County, NJ 0.45524835 1.8980244
Mercer County, NJ -0.76318273 -0.3151254
Middlesex County, NJ -0.48543941 -0.1240301
Passaic County, NJ -0.01772409 0.2714926
Next we can try a few different cluster numbers and allow the algorithm to search through 25 sets to identify the best groupings for each number:
set.seed(123)
k2_lihtc_div <- kmeans(svi_divisional_lihtc_cluster, centers = 2, nstart = 25)
set.seed(123)
k3_lihtc_div <- kmeans(svi_divisional_lihtc_cluster, centers = 3, nstart = 25)
set.seed(123)
k4_lihtc_div <- kmeans(svi_divisional_lihtc_cluster, centers = 4, nstart = 25)
set.seed(123)
k5_lihtc_div <- kmeans(svi_divisional_lihtc_cluster, centers = 5, nstart = 25)
Next we can view the plots to visually check the groupings and see if there’s any overlap:
# plots to compare
p_k2_lihtc_div <- factoextra::fviz_cluster(k2_lihtc_div, geom = "point", data = svi_divisional_lihtc_cluster) + ggtitle("k = 2")
p_k3_lihtc_div <- factoextra::fviz_cluster(k3_lihtc_div, geom = "point", data = svi_divisional_lihtc_cluster) + ggtitle("k = 3")
p_k4_lihtc_div <- factoextra::fviz_cluster(k4_lihtc_div, geom = "point", data = svi_divisional_lihtc_cluster) + ggtitle("k = 4")
p_k5_lihtc_div <- factoextra::fviz_cluster(k5_lihtc_div, geom = "point", data = svi_divisional_lihtc_cluster) + ggtitle("k = 5")
grid.arrange(p_k2_lihtc_div, p_k3_lihtc_div, p_k4_lihtc_div, p_k5_lihtc_div, nrow = 2)
Similar to NMTC, it appears it may be best to divide our data into 2 clusters, but let’s check our Elbow Plot:
elbow_plot(svi_divisional_lihtc_cluster)
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
[1] 6
[1] 7
[1] 8
[1] 9
[1] 10
[1] 11
[1] 12
[1] 13
[1] 14
[1] 15
Here we can see that the spacing between clusters actually decreases substantially after 3. Thus, we will go with 3 clusters for LIHTC for the Middle Atlantic Division:
p_k3_lihtc_div <- factoextra::fviz_cluster(k3_lihtc_div, geom = "point", data = svi_divisional_lihtc_cluster) + ggtitle("k = 3")
p_k3_lihtc_div
We can then transform our cluster matrix back to a data frame and assign these clusters to our counties:
svi_divisional_lihtc_cluster_label <- as.data.frame(svi_divisional_lihtc_cluster) %>%
rownames_to_column(var = "county_name") %>%
as_tibble() %>%
mutate(cluster = k3_lihtc_div$cluster) %>%
select(county_name, cluster)
svi_divisional_county_lihtc_projects2 <- left_join(svi_divisional_county_lihtc_projects, svi_divisional_lihtc_cluster_label, join_by(county_name == county_name))
# View county counts in each cluster
table(svi_divisional_county_lihtc_projects2$cluster)
1 2 3
26 6 1
Now we can re-examine the correlation between 2010 SVI Flag Counts and LIHTC Project Dollars for each subset of our data.
First recall our overall outcomes:
# Overall Scatterplot
# y is our independent variable (LIHTC Project Dollars),
# x is our dependent variable (SVI flag count)
ggplot2::ggplot(svi_divisional_county_lihtc_projects2,
aes(x=flag_count10,
y=post10_lihtc_project_dollars)) +
geom_point() +
geom_smooth(method="lm") +
scale_y_continuous(labels = scales::dollar_format())
# Pearson's r calculation
cor(svi_divisional_county_lihtc_projects2$flag_count10, svi_divisional_county_lihtc_projects2$post10_lihtc_project_dollars, method = "pearson")
[1] 0.8106627
First let’s look at our cluster 1 data (bottom left cluster):
# Cluster 1 Scatterplot
# y is our independent variable (LIHTC Project Dollars),
# x is our dependent variable (SVI flag count)
svi_divisional_county_lihtc_projects2 %>%
filter(cluster == 1) %>%
ggplot2::ggplot(aes(x=flag_count10,
y=post10_lihtc_project_dollars)) +
geom_point() +
geom_smooth(method="lm") +
scale_y_continuous(labels = scales::dollar_format())
flag_count10 post10_lihtc_project_dollars
flag_count10 1.0000000 0.5231078
post10_lihtc_project_dollars 0.5231078 1.0000000
Here we can find that we still have a positive correlation, though it has weakened to a moderate correlation from very strong. Thus, we can conlude that Kings County, NY is indeed an influential point that pulls our regression line and correlation to be stronger than the trend of the majority of our data.
Now let’s examine our middle points in Cluster 2:
# Cluster 2 Scatterplot
# y is our independent variable (LIHTC Project Dollars),
# x is our dependent variable (SVI flag count)
svi_divisional_county_lihtc_projects2 %>%
filter(cluster == 2) %>%
ggplot2::ggplot(aes(x=flag_count10,
y=post10_lihtc_project_dollars)) +
geom_point() +
geom_smooth(method="lm") +
scale_y_continuous(labels = scales::dollar_format())
flag_count10 post10_lihtc_project_dollars
flag_count10 1.000000000 -0.008926241
post10_lihtc_project_dollars -0.008926241 1.000000000
Here we can see that our data is too scattered to identify a correlation.
Finally, let’s look at our upper end county data in cluster 3:
# Cluster 3 Scatterplot
# y is our independent variable (LIHTC Project Dollars),
# x is our dependent variable (SVI flag count)
svi_divisional_county_lihtc_projects2 %>%
filter(cluster == 3) %>%
ggplot2::ggplot(aes(x=flag_count10,
y=post10_lihtc_project_dollars)) +
geom_point() +
geom_smooth(method="lm") +
scale_y_continuous(labels = scales::dollar_format())
flag_count10 post10_lihtc_project_dollars
flag_count10 NA NA
post10_lihtc_project_dollars NA NA
With only one point, Kings County, NY, we cannot calculate a correlation.
county_name | flag_count10 | post10_lihtc_dollars_formatted |
---|---|---|
Kings County, NY | 1154 | $26,054,976 |
Thus, we can conclude that the majority of our data follows the trend of a positive correlation between 2010 SVI Flag Counts and LIHTC dollars in our division. However, this relationship weakens for counties with mid-range vulnerability and dollars received.
Now let’s view this relationship spatially by creating a bivariate map.
# Join our LIHTC projects data with our shapefile geocoordinates
svi_divisional_county_lihtc_sf <- left_join(svi_divisional_county_lihtc_projects, divisional_county_sf, join_by("FIPS_st" == "STATEFP", "FIPS_county" == "COUNTYFP"))
svi_divisional_county_lihtc_sf %>% head(5) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
State | County | Division | post10_lihtc_project_cnt | tract_cnt | post10_lihtc_project_dollars | post10_lihtc_dollars_formatted | fips_county_st | FIPS_st | FIPS_county | state_name | region_number | region | division_number | flag_count10 | pop10 | flag_by_pop10 | flag_count_quantile10 | flag_pop_quantile10 | flag_count20 | pop20 | flag_by_pop20 | flag_count_quantile20 | flag_pop_quantile20 | county_name | geometry |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NJ | Atlantic County | Middle Atlantic Division | 1 | 3 | 1497998 | $1,497,998 | 34001 | 34 | 001 | New Jersey | 1 | Northeast Region | 2 | 35 | 7939 | 0.0044086 | 0.8 | 1.0 | 37 | 8027 | 0.0046094 | 0.8 | 1.0 | Atlantic County, NJ | MULTIPOLYGON (((-74.42314 3... |
NJ | Essex County | Middle Atlantic Division | 6 | 60 | 7410996 | $7,410,996 | 34013 | 34 | 013 | New Jersey | 1 | Northeast Region | 2 | 570 | 190447 | 0.0029930 | 1.0 | 0.8 | 577 | 189347 | 0.0030473 | 1.0 | 0.8 | Essex County, NJ | MULTIPOLYGON (((-74.13892 4... |
NJ | Mercer County | Middle Atlantic Division | 3 | 8 | 78558 | $78,558 | 34021 | 34 | 021 | New Jersey | 1 | Northeast Region | 2 | 72 | 23722 | 0.0030352 | 1.0 | 0.8 | 79 | 22886 | 0.0034519 | 1.0 | 1.0 | Mercer County, NJ | MULTIPOLYGON (((-74.77831 4... |
NJ | Middlesex County | Middle Atlantic Division | 1 | 13 | 1749999 | $1,749,999 | 34023 | 34 | 023 | New Jersey | 1 | Northeast Region | 2 | 115 | 61228 | 0.0018782 | 1.0 | 0.4 | 114 | 64219 | 0.0017752 | 1.0 | 0.4 | Middlesex County, NJ | MULTIPOLYGON (((-74.20896 4... |
NJ | Passaic County | Middle Atlantic Division | 5 | 20 | 4564679 | $4,564,679 | 34031 | 34 | 031 | New Jersey | 1 | Northeast Region | 2 | 204 | 86099 | 0.0023694 | 1.0 | 0.6 | 200 | 88872 | 0.0022504 | 1.0 | 0.6 | Passaic County, NJ | MULTIPOLYGON (((-74.38946 4... |
# Create classes for bivariate mapping
svi_divisional_county_lihtc_sf <- bi_class(svi_divisional_county_lihtc_sf, x = flag_count10, y = post10_lihtc_project_dollars, style = "quantile", dim = 3)
# View data
svi_divisional_county_lihtc_sf %>% head(5) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
State | County | Division | post10_lihtc_project_cnt | tract_cnt | post10_lihtc_project_dollars | post10_lihtc_dollars_formatted | fips_county_st | FIPS_st | FIPS_county | state_name | region_number | region | division_number | flag_count10 | pop10 | flag_by_pop10 | flag_count_quantile10 | flag_pop_quantile10 | flag_count20 | pop20 | flag_by_pop20 | flag_count_quantile20 | flag_pop_quantile20 | county_name | geometry | bi_class |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NJ | Atlantic County | Middle Atlantic Division | 1 | 3 | 1497998 | $1,497,998 | 34001 | 34 | 001 | New Jersey | 1 | Northeast Region | 2 | 35 | 7939 | 0.0044086 | 0.8 | 1.0 | 37 | 8027 | 0.0046094 | 0.8 | 1.0 | Atlantic County, NJ | MULTIPOLYGON (((-74.42314 3... | 1-1 |
NJ | Essex County | Middle Atlantic Division | 6 | 60 | 7410996 | $7,410,996 | 34013 | 34 | 013 | New Jersey | 1 | Northeast Region | 2 | 570 | 190447 | 0.0029930 | 1.0 | 0.8 | 577 | 189347 | 0.0030473 | 1.0 | 0.8 | Essex County, NJ | MULTIPOLYGON (((-74.13892 4... | 3-3 |
NJ | Mercer County | Middle Atlantic Division | 3 | 8 | 78558 | $78,558 | 34021 | 34 | 021 | New Jersey | 1 | Northeast Region | 2 | 72 | 23722 | 0.0030352 | 1.0 | 0.8 | 79 | 22886 | 0.0034519 | 1.0 | 1.0 | Mercer County, NJ | MULTIPOLYGON (((-74.77831 4... | 2-1 |
NJ | Middlesex County | Middle Atlantic Division | 1 | 13 | 1749999 | $1,749,999 | 34023 | 34 | 023 | New Jersey | 1 | Northeast Region | 2 | 115 | 61228 | 0.0018782 | 1.0 | 0.4 | 114 | 64219 | 0.0017752 | 1.0 | 0.4 | Middlesex County, NJ | MULTIPOLYGON (((-74.20896 4... | 2-2 |
NJ | Passaic County | Middle Atlantic Division | 5 | 20 | 4564679 | $4,564,679 | 34031 | 34 | 031 | New Jersey | 1 | Northeast Region | 2 | 204 | 86099 | 0.0023694 | 1.0 | 0.6 | 200 | 88872 | 0.0022504 | 1.0 | 0.6 | Passaic County, NJ | MULTIPOLYGON (((-74.38946 4... | 3-3 |
Finally we can create our map:
# Create map with ggplot
svi_divisional_county_lihtc_map <- ggplot() +
# Map county shapefile, fill with bi_class categories
geom_sf(data = svi_divisional_county_lihtc_sf, mapping = aes(geometry=geometry, fill = bi_class), color = "white", size = 0.1, show.legend = FALSE) +
# Set to biscale palette
bi_scale_fill(pal = "GrPink", dim = 3) +
# Add state shapefiles for outline
geom_sf(data=divisional_st_sf, color="black", fill=NA, linewidth=.5, aes(geometry=geometry)) +
labs(
title = paste0("Correlation of 2010 ", census_division, " SVI Flag Count \n and 2011 - 2020 LIHTC Tax Dollars")
) +
# Set them to biscale
bi_theme(base_size = 10)
# Create biscale legend
svi_divisional_county_lihtc_legend <- bi_legend(pal = "GrPink",
dim = 3,
xlab = "SVI Flag Count",
ylab = "LIHTC Dollars",
size = 8)
# Combine map with legend using cowplot
svi_divisional_county_lihtc_bivarmap <- ggdraw() +
draw_plot(svi_divisional_county_lihtc_map) +
# Set legend location
draw_plot(svi_divisional_county_lihtc_legend, x= -.02, y = -.05,
width=.20)
# View map
svi_divisional_county_lihtc_bivarmap
Here we can see the distribution of our LIHTC counties is quite a bit less than our NMTC projects as we would expect based on national trends.
Several of our counties in NY have either both moderate SVI flag count and moderate LIHTC dollars count or high SVI flag count and high LIHTC dollars.
The NYC, Pittsburgh, and Philadelphia metros have high SVI flag and high LIHTC dollars:
State County flag_count10 post10_lihtc_dollars_formatted
1 NY Kings County 1154 $26,054,976
2 NY Bronx County 471 $19,909,800
3 NY Queens County 310 $4,094,899
4 NY New York County 206 $9,337,368
5 NY Monroe County 170 $4,944,903
6 NY Erie County 168 $2,220,667
State County flag_count10 post10_lihtc_dollars_formatted
1 NJ Essex County 570 $7,410,996
2 NJ Passaic County 204 $4,564,679
3 NJ Middlesex County 115 $1,749,999
4 NJ Mercer County 72 $78,558
5 NJ Union County 66 $6,296,201
6 NJ Atlantic County 35 $1,497,998
State County flag_count10 post10_lihtc_dollars_formatted
1 PA Philadelphia County 261 $6,805,843
2 PA Allegheny County 185 $8,889,633
3 PA Erie County 70 $944,622
4 PA Berks County 50 $705,044
5 PA Delaware County 31 $3,437,127
6 PA Blair County 10 $736,262
saveRDS(svi_divisional_lihtc, file = here::here(paste0("data/wrangling/", str_replace_all(census_division, " ", "_"), "_svi_divisional_lihtc.rds")))
saveRDS(svi_national_lihtc, file = here::here(paste0("data/wrangling/", str_replace_all(census_division, " ", "_"), "_svi_national_lihtc.rds")))
saveRDS(svi_divisional_nmtc, file = here::here(paste0("data/wrangling/", str_replace_all(census_division, " ", "_"), "_svi_divisional_nmtc.rds")))
saveRDS(svi_national_nmtc, file = here::here(paste0("data/wrangling/", str_replace_all(census_division, " ", "_"), "_svi_national_nmtc.rds")))
Congratulations! You’ve reached the end of the Lab-04 Tutorial!
You are now ready to complete your lab and submit it on Canvas.
Your import step in your .RMD file should look similar to the code chunk below, but your project_data_steps.R file should have your initials on the end (i.e. project_data_steps_CS.R).
import::here( "fips_census_regions",
"load_svi_data",
"merge_svi_data",
"census_division",
"flag_summarize",
"summarize_county_nmtc",
"summarize_county_lihtc",
"elbow_plot",
# notice the use of here::here() that points to the .R file
# where all these R objects are created
.from = here::here("analysis/project_data_steps.R"),
.character_only = TRUE)
The following checklist will ensure that you’re on track: